Experiment 1

Alternating Current with Coil and Ohmic Resistors

1- Objects of the experiment

- Determining the total impedance and the phase shift in a series connection of a coil and a resistor.

- Determining the inductance's value of the coil.

2- Principles

2-1- Inductors in an AC circuit:

If an alternating voltage

$$\Delta v = \Delta V_{\text{max}} \sin(\omega t) \text{ with } \omega = 2\pi f \qquad (\text{Equation 1})$$

is applied to a coil with the inductance L, the current flowing through the coil is

$$i_{L} = \frac{\Delta V_{\text{max}}}{\omega L} \sin\left(\omega t - \frac{\pi}{2}\right)$$
 (Equation 2)

Therefore an inductive reactance

$$X_L = \omega L$$
 (Equation 3)

is assigned to the coil, and the voltage is said to be phase-shifted with respect to the current by 90° (see Figure 2). The phase shift is often represented in a vector diagram.

Figure 1. A circuit consisting of an inductor of inductance L connected to an AC source.

Figure 2. (a) Plots of the instantaneous current and the instantaneous voltage across an inductor as functions of time. The current lags behind the voltage by 90°. (b) Phasor diagram for the inductive circuit, showing that the current lags behind the voltage by 90°.

2-2- The RL series circuit

If the coil is connected in series with an ohmic resistor, the same current flows through both components. This current can be written in the form

$$i = I_{\max} \sin(\omega t - \Phi)$$
 (Equation 4)

where Φ (phase angle) is unknown for the time being. Correspondingly, the voltage drops at the resistor and at the coil are, respectively,

$$\Delta v_R = I_{\max} R \sin(\omega t)$$
 (Equation 5)
$$\Delta v_L = I_{\max} X_L \sin\left(\omega t + \frac{\pi}{2}\right)$$
 (Equation 6)

The sum of these two voltages is

$$\Delta v = \Delta v_R + \Delta v_L \qquad (Equation 7)$$

It is simpler to obtain the sum by examining the phasor diagram

Figure 3. Phasor diagram for the series RL circuits. The phasor ΔV_R is in phase with the current phasor I_{max} , the phasor ΔV_L leads I_{max} by 90°. The total voltage ΔV_{max} makes an angle Φ with I_{max} .

The series connection of an ohmic resistor and a coil can be assigned the impedance

$$Z = \sqrt{R^2 + X_L^2}$$
 (Equation 8)

The voltage is phase-shifted with respect to the current by the angle

$$\Phi = \tan^{-1} \left(\frac{X_L}{R} \right)$$
 (Equation 9)

3- Apparatus

1 plug-in board A4; 1 resistor 1Ω ; 1 resistor 100Ω ; 1 coil 1000 turns; 1 function generator; 1 two-channel oscilloscope; 2 screened cables BNC/4 mm; connecting leads.

4- Setup

The experimental setup is illustrated in Figure 5.

- Connect the function generator as an AC voltage source.

- Connect the channel 1 of the oscilloscope to the output of the function generator, and feed the voltage drop at the measuring resistor 1Ω into the channel 2.

- Press the DUAL pushbutton at the oscilloscope, and select AC for the coupling and the trigger.

<u>Figure 5.</u> Experimental setup for determining the impedance and phase-shift in circuits with coil and ohmic resistors in series connection.

5- Carrying out the experiment

- Connect the coil as an inductance in series with the 100Ω resistor.

- Switch the function generator on by plugging in the plug-in power supply, and adjust a frequency of 1000Hz (T=0.1ms).

- Select an appropriate time-base sweep at the oscilloscope.

- Adjust an output signal ΔV_{max} =5V.

- Read the amplitude $\Delta V(R_2)$ of the signal in the channel 2 of the oscilloscope, and enter

it in the table as current $I_{max} = \frac{\Delta V(R_2)}{I\Omega}$

- Read the time difference Δt between the zero passages of the two signals.

Figure 4. Phase difference measurement.

$$\Phi = 360 \frac{\Delta t}{T} \quad (in \ degrees) \tag{Equation 10}$$

- Calculate the total impedance:

$$Z = \frac{\Delta V_{\text{max}}}{I_{\text{max}}} = \frac{5V}{I_{\text{max}}}$$
(Equation 11)

- Calculate the inductance of the coil as function of Φ :

$$L_{I} = \frac{R_{I}}{\omega} \tan \Phi . \qquad (\text{Equation 12})$$

- Calculate the inductance of the coil as function of the impedance Z:

$$L_2 = \sqrt{\frac{Z^2 - R^2}{\omega^2}}$$
 (Equation 13)

- Adjust other frequencies according to Table 1, and repeat the measurements.

f (Hz)	ω (rad/s)	T (s)	$I_{max}(A)$	Δt (s)	$Z(\Omega)$	Φ (Eq.10)	L ₁ (H)	L ₂ (H)
10000								
5000								
2000								
1000								
500								
200								
100								
50								

<u>**Table 1**</u>. Measuring data for the oscillation period, current amplitude I_{max} and time difference Δt .

- Find average values of \overline{L}_1 , and \overline{L}_2 , and compare them.

- Fill the following table:

<u>**Table 2.**</u> Values of the inductive reactance and the impedance calculated from the measuring data from Table 1.

f (Hz)	ω (rad/s)	$X_{L} = \omega \left(\frac{\overline{L}_{1} + \overline{L}_{2}}{2} \right) (\Omega)$	Ζ(Ω)
10000			
5000			
2000			
1000			
500			
200			
100			
50			

- Prepare a sheet of graph paper for plotting Z^2 versus X_L^2 . You should make Z^2 the vertical axis and X_L^2 the horizontal axis. Each axis should be labeled and appropriate units indicated. The graph should have a title.

- Plot your data on the graph.

- Draw the best straight line through your data points by using method of least squares (see Appendix B).

- Calculate the percent error on the slope of the best straight line, where its accepted value is 1 (see Equation 8).

- Determine the y-intercept value and compare it to $R=100\Omega$.

6) Conclusions

- Discuss your results.