Experiment 10

Field Effect Transistor (FET)

1- Objects of the Experiment:

- Study the drain current - voltage characteristics for n-channel JFET.

- Representing the relationship between drain current, I_D , and gate to source voltage, V_{GS} , for the transistor biased in the saturation region.

2- Principles

The acronym 'FET' stands for **field effect transistor**. It is a three-terminal unipolar solid-state device in which current is controlled by an **electric field**.

Fig. 1 FET construction

As shown in Fig.1, it can be fabricated with either an N-channel or P-channel though Nchannel is generally preferred. For fabricating an N-channel JFET, first a narrow bar of N-type semiconductor material is taken and then two P-type junctions are diffused on opposite sides of its middle part [Fig.1 (a)]. These junctions form two P-N diodes or gates and the area between these gates is called channel. The two P-regions are internally connected and a single lead is brought out which is called gate terminal. Ohmic contacts (direct electrical connections) are made at the two ends of the bar-one lead is called source terminal S and the other drain terminal D. When potential difference is established between drain and source (V_{DS}), current (I_D) flows along the length of the 'bar' through the channel located between the two P regions. The current consists of only majority carriers which, in the present case, are electrons. P-channel JFET is similar in construction except that it uses P-type bar and two N type junctions. The majority carriers are holes which flow through the channel located between the two N-regions or gates.

Following FET notation is worth remembering:

- <u>Source</u>: it is the terminal through which majority carriers enter the bar. Since carriers come from it, it is called the source.

- **Drain**: it is the terminal through which majority carriers leave the bar i.e. they are drained out from this terminal. The drain to source voltage, V_{DS} , drives the drain current I_D .

- <u>Gates</u>: these are two internally-connected heavily-doped impurity regions which form two P-N junctions. The gate-source voltage VGS reverse biases the gates.

- <u>Channel</u>: it is the space between two gates through which majority carriers pass from source-to-drain when V_{DS} is applied.

Schematic symbols for N-channel and P-channel JFET are shown in Fig.1 (c). It must be kept in mind that gate arrow always points to N-type material.

We will consider the following two characteristics:

- <u>Drain characteristics</u>: it gives relation between I_D and V_{DS} for different values of V_{GS} (which is called running variable).

- <u>**Transfer characteristics**</u>: It gives relation between I_D and V_{GS} for different values of V_{DS} in the saturation region.

51

We will analyze these characteristics for an N-channel JFET connected in the commonsource mode as shown in Fig. 2.

3- Equipment

1 Power supply unit	727 88
1 resistor $1k\Omega / 2W$	577 44
1 resistor $47k\Omega / 0.5W$	577 64
1 potentiometer 10 k Ω / 1W	577 925
1 potentiometer 100 k Ω / 1W	577 96
1 FET transistor BF 244	578 77
3 multimeters	
1 Plug-in board 297X300	72650
1 Set of bridging plugs 19mm	501 48
1 Set of connecting leads	501 532

4- Setup and carrying out the experiment

Figure 2.

4-1- Study the drain voltage-current characteristic:

- Assemble the circuit as shown in Figure 2

- Set a gate voltage V_{GS} = -1.3V by using the 100k Ω potentiometer

- Measure the relation between I_D (multimeter) and V_{DS} (multimeter) and enter the values in Table 1.

Table 1		
V _{DS} (V)	I _D (mA)	
0		
0.2		
0.5		
1		
1.5		
2		
2.5		
3		
3.5		
4		
4.5		
5		

-Repeat measuring for different value of V_{GS} =(-1V, -0.6V, -0.3V, 0.0V, 0.2V, 0.4V)

- Prepare a sheet of graph paper for plotting I_D versus V_{DS} . You should make I_D the vertical axis and V_{DS} the horizontal axis. Each axis should be labeled and appropriate units indicated. The graph should have a title.

- Plot your data from Table 1 and draw the graph of $I_D = f(V_{DS})$.

4-2- Representing the relationship between I_D and V_{GS} .

- Directly from the graph fill Table 2 by taking the drain voltage V_{DS} at a fixed value in saturation region

$V_{GS}(V)$	$I_D(mA)$
-1.3	
-1.0	
-0.6	
-0.3	
0.0	
0.2	
0.4	

Table 2.

- Prepare a sheet of graph paper for plotting I_D versus V_{GS} . You should make I_D the vertical axis and V_{GS} the horizontal axis. Each axis should be labeled and appropriate units indicated. The graph should have a title.

- Plot your data from Table 1 and draw the graph of $I_D = f(V_{GS})$.

5- Conclusion

Make a general conclusion about the experiments and the results obtained.