Experiment 9

Bipolar Transistor Characteristics

1- Objects of the Experiment:

- Base-emitter diode characteristic for open collector.
- Representing the relationship $I_C(I_B)$ with V_{CE} as parameter (V_{CE} = constant).
- Measurement methods for determining the relation between V_{CE} and I_C .

2- Principles

There are two types of bipolar transistors: npn transistors doping and pnp transistors doping as shown in Figure 1.

Figure 1. (a) npn transistors doping; (b) pnp transistors doping

Emitter: this zone emits charge carriers into the middle zone (base).

Collector: This zone collects charge carriers.

 I_B causes a flood of charge carriers in the weekly-doped base. The vast majority of these charge carriers are removed via the collector by V_{CB} .

 I_C is dependent on I_B and $I_C >> I_B$: a small base current can control a relatively large collector current I_C .

3- Equipments

1 resistor $1k\Omega / 2W$	577 44
1 resistor 100Ω / 2W	577 32
1 resistor $10k\Omega / 0.5W$	577 56
1 Potentiometer $10k\Omega / 1W$	577 925
1 Potentiometer $1k\Omega / 1W$	577 92
1 Transistor BD 137, NPN	578 67
1 multimeters	
1 Power supply unit	726 88
1 Plug-in board 297X300	72650
1 Set of bridging plugs 19mm	501 48
1 Set of connecting leads	501 532

4- Setup and carrying out the experiment

4-1- Base-emitter diode characteristic for open collector

Figure 1. Base-emitter diode characteristic for open collector

The characteristic of $I_B = f(V_{BE})$ is called the transistor input characteristic.

- Assemble the circuit as shown in Figure 1.

- Measure the relation between I_{B} and V_{BE} and enter the values in Table 1.

V _{BE} (V)	I _B (mA)
0.1	

0.3	
0.5	
0.6	
0.65	
0.7	
0.75	
0.8	

- Prepare a sheet of graph paper for plotting I_B versus V_{BE} . You should make I_B the vertical axis and V_{BE} the horizontal axis. Each axis should be labeled and appropriate units indicated. The graph should have a title.

- Plot your data from Table 1 and draw the graph of $I_B = f(V_{BE})$.

4-2- Control characteristic and current amplification

The base voltage V_{BE} is set using potentiometer R_2 . This controls the base current I_B which then in turn causes the current I_C .

- Assemble the circuit as shown in Figure 3.
- Adjust the potentiometer in both directions.

- Measure the collector currents witch correspond to the base currents given in Table 3. Enter these values into the second column.

$I_B(\mu A)$	$I_C(mA)$
10	
20	
50	
80	
100	
200	
300	
500	

Table 3.

- Prepare a sheet of graph paper for plotting I_C versus I_B (Table 3). You should make I_C the vertical axis and I_B the horizontal axis. Each axis should be labeled and appropriate units indicated. The graph should have a title.

- Plot your data on the graph.

- Draw best fit line to the points on your graph. The best fit line must be drawn by using method of least squares

- Determine the slope of your line.

- Roughly describe the relationship between I_B and I_C .

4-3- Transistor output characteristic

- Assemble the circuit as shown in Figure 4.

- Set a base current $I_B = 100 \ \mu A$ using the base potentiometer (10k Ω). You must maintain the base current at a constant magnitude.

- Set the voltage V_{CE} given in Table 4 using the collector potentiometer (1k Ω), measure the corresponding value V_2 and calculate V_1 in each case. (Make sure that I_B is reset as required.)

Figure 4. Measurement method for determining the relationship between V_{CE} and I_C .

- Calculate the corresponding collector currents and enter V_I and I_C values in Table 4.

- Repeat the procedure for the base currents $I_B = 200 \ \mu A$, $I_B = 300 \ \mu A$, $I_B = 400 \ \mu A$, and $I_B = 500 \ \mu A$ (Tables 5 – 8).

Table 4.				
	$I_B = 100 \ \mu A$			
$V_{CE}(V)$	$V_2(V)$	V ₁ (V)	I _C (mA)	
0				
0.6				

 $I_{B} = 200 \ \mu A$ $V_{CE}(V) \quad V_{2}(V) \quad V_{1}(V) \quad I_{C}(mA)$ 0 \dots \dots \dots \dots \dots 0.6

Table 5.

1 aoie 0.	Tabl	e	6.	
-----------	------	---	----	--

Table 7.

$I_B = 300 \ \mu A$			
$V_{CE}(V)$	$V_2(V)$	V ₁ (V)	$I_{C}(mA)$
0			
0.6			

$I_B = 400 \ \mu A$			
$V_{CE}(V)$	$V_2(V)$	V ₁ (V)	I _C (mA)
0			
0.6			

Table 8.

$I_B = 500 \ \mu A$			
$V_{CE}(V)$	$V_2(V)$	$V_1(V)$	I _C (mA)
0			
0.6			

- Prepare a sheet of graph paper for plotting I_C versus V_{CE} (Table 4-8). You should make I_C the vertical axis and V_{CE} the horizontal axis. Each axis should be labeled and appropriate units indicated. The graph should have a title.

- Plot your data on the graph.

- Describe the curve of the parameter $I_B = 100 \ \mu A$.

- Compare the high base current curves with the low ones.

5- Conclusion

Make a general conclusion about the experiments and the results obtained.