Experiment 9
 Bipolar Transistor Characteristics

1- Objects of the Experiment:

- Base-emitter diode characteristic for open collector.
- Representing the relationship $I_{C}\left(I_{B}\right)$ with $V_{C E}$ as parameter $\left(V_{C E}=\right.$ constant $)$.
- Measurement methods for determining the relation between $V_{C E}$ and I_{C}.

2- Principles

There are two types of bipolar transistors: npn transistors doping and pnp transistors doping as shown in Figure 1.

Figure 1. (a) npn transistors doping; (b) pnp transistors doping

Emitter: this zone emits charge carriers into the middle zone (base).
Collector: This zone collects charge carriers.
I_{B} causes a flood of charge carriers in the weekly-doped base. The vast majority of these charge carriers are removed via the collector by V_{CB}.
I_{C} is dependent on I_{B} and $I_{C} \gg I_{B}$: a small base current can control a relatively large collector current I_{C}.

3- Equipments

1 resistor $1 \mathrm{k} \Omega / 2 \mathrm{~W}$
1 resistor $100 \Omega / 2 \mathrm{~W}$
1 resistor $10 \mathrm{k} \Omega / 0.5 \mathrm{~W}$
1 Potentiometer $10 \mathrm{k} \Omega / 1 \mathrm{~W}$
1 Potentiometer $1 \mathrm{k} \Omega / 1 \mathrm{~W}$
1 Transistor BD 137, NPN
1 multimeters
1 Power supply unit
1 Plug-in board 297X300
1 Set of bridging plugs 19 mm
1 Set of connecting leads

57744
57732
57756
577925
57792
57867

72688
72650
50148
501532

4- Setup and carrying out the experiment

4-1- Base-emitter diode characteristic for open collector

Figure 1. Base-emitter diode characteristic for open collector

The characteristic of $I_{B}=f\left(V_{B E}\right)$ is called the transistor input characteristic.

- Assemble the circuit as shown in Figure 1.
- Measure the relation between I_{B} and V_{BE} and enter the values in Table 1.

Table 1

$\mathbf{V}_{\mathbf{B E}}(\mathbf{V})$	$\mathbf{I}_{\mathbf{B}}(\mathbf{m A})$
0.1	

0.3	
0.5	
0.6	
0.65	
0.7	
0.75	
0.8	

- Prepare a sheet of graph paper for plotting I_{B} versus $V_{B E}$. You should make I_{B} the vertical axis and $V_{B E}$ the horizontal axis. Each axis should be labeled and appropriate units indicated. The graph should have a title.
- Plot your data from Table 1 and draw the graph of $I_{B}=f\left(V_{B E}\right)$.

4-2- Control characteristic and current amplification

Figure 3.

The base voltage $V_{B E}$ is set using potentiometer R_{2}. This controls the base current I_{B} which then in turn causes the current I_{C}.

- Assemble the circuit as shown in Figure 3.
- Adjust the potentiometer in both directions.
- Measure the collector currents witch correspond to the base currents given in Table 3. Enter these values into the second column.

Table 3.

$\boldsymbol{I}_{\boldsymbol{B}}(\boldsymbol{\mu} \boldsymbol{A})$	$\boldsymbol{I}_{\boldsymbol{C}}(\boldsymbol{m A})$
10	
20	
50	
80	
100	
200	
300	
500	

- Prepare a sheet of graph paper for plotting I_{C} versus I_{B} (Table 3). You should make I_{C} the vertical axis and I_{B} the horizontal axis. Each axis should be labeled and appropriate units indicated. The graph should have a title.
- Plot your data on the graph.
- Draw best fit line to the points on your graph. The best fit line must be drawn by using method of least squares
- Determine the slope of your line.
- Roughly describe the relationship between I_{B} and I_{C}.

4-3- Transistor output characteristic

- Assemble the circuit as shown in Figure 4.
- Set a base current $I_{B}=100 \mu A$ using the base potentiometer ($10 \mathrm{k} \Omega$). You must maintain the base current at a constant magnitude.
- Set the voltage $V_{C E}$ given in Table 4 using the collector potentiometer $(1 \mathrm{k} \Omega)$, measure the corresponding value V_{2} and calculate V_{l} in each case. (Make sure that I_{B} is reset as required.)

Figure 4. Measurement method for determining the relationship between $V_{C E}$ and I_{C}.

- Calculate the corresponding collector currents and enter V_{l} and I_{C} values in Table 4.
- Repeat the procedure for the base currents $I_{B}=200 \mu A, I_{B}=300 \mu A, I_{B}=400 \mu \mathrm{~A}$, and $I_{B}=500 \mu A$ (Tables 5-8).

Table 4.

$I_{B}=100 \mu A$			
$V_{C E}(V)$	$\mathrm{V}_{2}(\mathrm{~V})$	$\mathrm{V}_{1}(\mathrm{~V})$	$\mathrm{I}_{\mathrm{C}}(\mathrm{mA})$
0			
$\cdots \cdot$			
0.6			

Table 5.

$I_{B}=200 \mu A$			
$V_{C E}(V)$	$\mathrm{V}_{2}(\mathrm{~V})$	$\mathrm{V}_{1}(\mathrm{~V})$	$\mathrm{I}_{\mathrm{C}}(\mathrm{mA})$
0			
$\cdots \cdot$			
0.6			

Table 6.

$I_{B}=300 \mu A$				
$V_{C E}(V)$	$\mathrm{V}_{2}(\mathrm{~V})$	$\mathrm{V}_{1}(\mathrm{~V})$	$\mathrm{I}_{\mathrm{C}}(\mathrm{mA})$	
0				
$\cdots \cdot$				
0.6				

Table 7.

$I_{B}=400 \mu A$			
$V_{C E}(V)$	$\mathrm{V}_{2}(\mathrm{~V})$	$\mathrm{V}_{1}(\mathrm{~V})$	$\mathrm{I}_{\mathrm{C}}(\mathrm{mA})$
0			
$\cdots \cdot$			
0.6			

Table 8.

$I_{B}=500 \mu A$			
$V_{C E}(V)$	$\mathrm{V}_{2}(\mathrm{~V})$	$\mathrm{V}_{1}(\mathrm{~V})$	$\mathrm{I}_{\mathrm{C}}(\mathrm{mA})$
0			
$\cdots \cdot$			
0.6			

- Prepare a sheet of graph paper for plotting I_{C} versus $V_{C E}$ (Table 4-8). You should make I_{C} the vertical axis and $V_{C E}$ the horizontal axis. Each axis should be labeled and appropriate units indicated. The graph should have a title.
- Plot your data on the graph.
- Describe the curve of the parameter $I_{B}=100 \mu \mathrm{~A}$.
- Compare the high base current curves with the low ones.

5- Conclusion

Make a general conclusion about the experiments and the results obtained.

