Experiment 6 Linear motion and Newton's second law

1-Objects of the experiment:

- Measuring the time required by a trolley of mass m_{1} to cover a certain path " d ".
- Representing the relation between path and time in an d- t^{2} diagram.
- Calculating the acceleration "a" of the trolley of mass m_{l} with different masses of the falling object of mass m_{2}.

2-Principles

Figure 1.
If the acceleration is constant, we can use the following kinematics equation:

$$
\begin{equation*}
d=v_{0} t+\frac{1}{2} a t^{2} \tag{1}
\end{equation*}
$$

$v_{0}=v_{A}=0$, then

$$
\begin{equation*}
d=\frac{1}{2} a t^{2} \tag{2}
\end{equation*}
$$

Rearrangement of Equation 2 gives us:

$$
\begin{equation*}
t^{2}=\frac{2}{a} d \tag{3}
\end{equation*}
$$

The Newton's second law:

$$
\begin{equation*}
\sum \vec{F}=m_{1} \vec{a} \tag{4}
\end{equation*}
$$

where $\sum \vec{F}$ is the resultant force exerted on the mass m_{1} (or m_{2}) and \vec{a} is its acceleration.

Two masses connected by a light cord.

Fig. 2: Free- body diagrams for the two masses:

By using (Equation 4), we can find the acceleration as:

$$
\begin{equation*}
a=\frac{m_{2}}{m_{1}+m_{2}} g \tag{5}
\end{equation*}
$$

3-Carrying out the experiment

- Align the track horizontally.
- Adjust the voltage at the holding magnet so that the trolley with the additional weight is just held.
- Define the starting point with the movable interrupter flag on the trolley, and read it from the scale of the track.
- Position the light barrier at a distance of 20 cm from the starting point.
- Release the motion by pressing the START/STOP key at the stopclock.
- Wait until the interrupter flag passes the light barrier, and read the time from the stopclock.
- Reset the stopclock to zero by pressing the RESET key.
- Repeat the measurement at distances $30 \mathrm{~cm}, 40 \mathrm{~cm}, 50 \mathrm{~cm}$, and 60 cm from the starting point.

4-Measurements

Table 1. Distance as a function of time with $\mathbf{m}_{\mathbf{1}}=\mathbf{0 . 4 8 6 k g}$ and $\mathbf{m}_{\mathbf{2}}=\mathbf{0} \mathbf{0 . 0 2 5 2 k g}$.

$\boldsymbol{d}(\boldsymbol{m})$	$\boldsymbol{t}_{\boldsymbol{1}}(\boldsymbol{s})$	$\boldsymbol{t}_{\mathbf{2}}(\boldsymbol{s})$	$\boldsymbol{t}_{\mathbf{3}}(\boldsymbol{s})$	Average \boldsymbol{t}	\boldsymbol{t}^{2}
0.2					
0.3					
0.4					
0.5					
0.6					

- Graph distance \mathbf{d} versus time squared $\mathbf{t}^{\mathbf{2}}$ (d is the axis-x and t^{2} is the axis-y)
- Draw the best line.
- Determine the acceleration " a " by finding a relation between the slope and the acceleration (use Equation 3).
- Determine the acceleration " \boldsymbol{a} " by repeating the measurement as above but with $\mathrm{m}_{2}=$ 0.0452 kg .

Table 2. Distance as a function of time with $\mathbf{m}_{\mathbf{1}}=\mathbf{0 . 4 8 6} \mathrm{kg}$ and $\mathbf{m}_{\mathbf{2}}=\mathbf{0} \mathbf{0} \mathbf{0 4 5 2} \mathbf{k g}$.

$\boldsymbol{d}(\mathrm{m})$	$\boldsymbol{t}_{\mathbf{1}}(\boldsymbol{s})$	$\boldsymbol{t}_{\mathbf{2}}(\boldsymbol{s})$	$\boldsymbol{t}_{\mathbf{3}}(\boldsymbol{s})$	Average \boldsymbol{t}	\boldsymbol{t}^{2}
0.2					
0.3					
0.4					
0.5					
0.6					

- Discuss your results.

