Experiment 7

Free fall-Conservation of mechanical energy

1- Objects of the experiment

To observe the changes in potential energy, kinetic energy, and total mechanical energy of a rolling body, and to ascertain graphically whether the total mechanical energy remains constant.

2- Principles

Kinetic energy of a mass *m* moving with speed *v*, is defined as:

$$K = \frac{1}{2}mv^2 \tag{1}$$

The product of the magnitude of the gravitational force \underline{mg} acting on an object and the height \underline{h} of the object is named the gravitational potential energy U, and so the defining equation for gravitational potential energy is

$$U = m g h \tag{2}$$

An object held at some height h above the floor has no kinetic energy (v=0). However, the gravitational potential energy of the object-Earth system is equal to *mgh*. If the object is dropped, it falls to the floor; as it falls, its speed and thus its kinetic energy increase, while the potential energy of the system decreases. In other words, the sum of the kinetic \underline{K} and potential energies \underline{U} – the total mechanical energy \underline{E} – remains constant. This is an example of the principle of **conservation of mechanical energy**.

$$E \equiv K + U \tag{3}$$

$$\begin{cases} E_{A} = mgh_{A} + \frac{1}{2}mv_{A}^{2} \\ E_{B} = mgh_{B} + \frac{1}{2}mv_{B}^{2} \end{cases}$$

$$\Delta E = E_{B} - E_{A} = (mgh_{B} + \frac{1}{2}mv_{B}^{2}) - (mgh_{A} + \frac{1}{2}mv_{A}^{2}) \\ \Delta E = mg(h_{B} - h_{A}) + \frac{1}{2}m(v_{B}^{2} - v_{A}^{2}) \end{cases}$$
(4)

 v_A is equal to zero because at point *A*, the trolley is at rest ($v_A=0$), and $h_B - h_A = -h$ It follows that:

$$\Delta E = -mgh + \frac{1}{2}mv_B^2 \tag{5}$$

where

$$\Delta K = K_B - K_A = \frac{1}{2}mv_B^2 \tag{6}$$

$$\Delta U = U_B - U_A = -mgh \tag{7}$$

In Equation (5), $\Delta E = 0$ represents the condition for the mechanical energy to be conserved.

4- Method and results

- Setup the experiment as shown in Figure 1.

- Position the two combination light barriers in such a way that they touch each other and the half distance between them corresponds to the position h_B .

- Make the distance $h=h_A-h_B=0.3m$

- The distance between the two light barriers is equal to $\Delta y=0.035m$ and it is fixed. To determine the speed at point B, you should follow this expression:

$$v_B = \frac{\Delta y}{t_{avr}}$$

- Release the motion by pressing the START/STOP key at the counter S.

- Write down the time from the counter S.

- Reset the counter S to zero by pressing the RESET key.

- Position the two combination light barriers at other distances as shown in Table 1 and repeat the measurement as mentioned above.

$h_A =$								
$h = h_A - h_B(m)$	$t_1(s)$	$t_2(s)$	$t_3(s)$	$t_{avr}(s)$	$v_B(m/s)$	$\Delta K(J)$	$\Delta U(J)$	$\Delta E(J)$
0.3								
0.4								
0.5								
0.6								
0.7								

<u>Table 1</u>. Time t_i as function of height h. Take the position h_A always constant.

- Prepare a sheet of graph paper for plotting ΔK , ΔU and ΔE versus d. You should make d the horizontal axis, and ΔK , ΔU and ΔE the vertical axis.

- Plot the measured values.

- Draw the three best fit lines to the points on your graph.

- Determine the slopes, $S_{\Delta K},\,S_{\Delta U}$ and $S_{\Delta E}$ of best fit lines.

5- Conclusions

Discuss your results