Experiment 7

Free fall-Conservation of mechanical energy

1- Objects of the experiment

To observe the changes in potential energy, kinetic energy, and total mechanical energy of a rolling body, and to ascertain graphically whether the total mechanical energy remains constant.

2- Principles

Kinetic energy of a mass m moving with speed v, is defined as:

$$
\begin{equation*}
K=\frac{1}{2} m v^{2} \tag{1}
\end{equation*}
$$

The product of the magnitude of the gravitational force $\underline{\boldsymbol{m} \boldsymbol{g}}$ acting on an object and the height $\underline{\boldsymbol{h}}$ of the object is named the gravitational potential energy U , and so the defining equation for gravitational potential energy is

$$
\begin{equation*}
U=m g h \tag{2}
\end{equation*}
$$

An object held at some height h above the floor has no kinetic energy ($v=0$). However, the gravitational potential energy of the object-Earth system is equal to $m g h$. If the object is dropped, it falls to the floor; as it falls, its speed and thus its kinetic energy increase, while the potential energy of the system decreases. In other words, the sum of the kinetic $\underline{\boldsymbol{K}}$ and potential energies $\underline{\boldsymbol{U}}$ - the total mechanical energy $\underline{\boldsymbol{E}}$ - remains constant. This is an example of the principle of conservation of mechanical energy.

$$
\begin{equation*}
E \equiv K+U \tag{3}
\end{equation*}
$$

Figure1. Experiment's setup.

$$
\begin{align*}
& \left\{\begin{array}{l}
E_{A}=m g h_{A}+\frac{1}{2} m v_{A}^{2} \\
E_{B}=m g h_{B}+\frac{1}{2} m v_{B}^{2}
\end{array}\right. \tag{4}\\
& \Delta E=E_{B}-E_{A}=\left(m g h_{B}+\frac{1}{2} m v_{B}^{2}\right)-\left(m g h_{A}+\frac{1}{2} m v_{A}^{2}\right)
\end{aligned} \begin{aligned}
& \Delta E=m g\left(h_{B}-h_{A}\right)+\frac{1}{2} m\left(v_{B}^{2}-v_{A}^{2}\right)
\end{align*}
$$

v_{A} is equal to zero because at point A, the trolley is at rest ($v_{A}=0$), and $h_{B}-h_{A}=-h$ It follows that:

$$
\begin{equation*}
\Delta E=-m g h+\frac{1}{2} m v_{B}^{2} \tag{5}
\end{equation*}
$$

where

$$
\begin{align*}
& \Delta K=K_{B}-K_{A}=\frac{1}{2} m v_{B}^{2} \tag{6}\\
& \Delta U=U_{B}-U_{A}=-m g h \tag{7}
\end{align*}
$$

In Equation (5), $\Delta E=0$ represents the condition for the mechanical energy to be conserved.

4- Method and results

- Setup the experiment as shown in Figure 1.
- Position the two combination light barriers in such a way that they touch each other and the half distance between them corresponds to the position h_{B}.
- Make the distance $h=h_{A}-h_{B}=0.3 m$
- The distance between the two light barriers is equal to $\Delta y=0.035 \mathrm{~m}$ and it is fixed. To determine the speed at point B , you should follow this expression:

$$
v_{B}=\frac{\Delta y}{t_{a v r}}
$$

- Release the motion by pressing the START/STOP key at the counter S.
- Write down the time from the counter S.
- Reset the counter S to zero by pressing the RESET key.
- Position the two combination light barriers at other distances as shown in Table 1 and repeat the measurement as mentioned above.

Table 1. Time t_{i} as function of height h. Take the position h_{A} always constant.

$h_{A}=$								
$h=h_{A}-h_{B}(m)$	$t_{l}(s)$	$t_{2}(s)$	$t_{3}(s)$	$t_{\text {avr }}(s)$	$v_{B}(m / s)$	$\Delta K(J)$	$\Delta U(J)$	$\Delta E(J)$
0.3								
0.4								
0.5								
0.6								
0.7								

- Prepare a sheet of graph paper for plotting $\boldsymbol{\Delta K}, \boldsymbol{\Delta} \boldsymbol{U}$ and $\boldsymbol{\Delta E}$ versus \boldsymbol{d}. You should make \boldsymbol{d} the horizontal axis, and $\boldsymbol{\Delta K}, \boldsymbol{\Delta U}$ and $\boldsymbol{\Delta E}$ the vertical axis.
- Plot the measured values.
- Draw the three best fit lines to the points on your graph.
- Determine the slopes, $S_{\Delta K}, S_{\Delta U}$ and $S_{\Delta E}$ of best fit lines.

5- Conclusions

Discuss your results

