Chapter 3

Rates of return

3.1 Cash-flows

Any investment project has multiple cashflows at different time.
(say $C_{0}, C_{1}, \ldots \quad, C_{n}$ at time $t_{0}, t_{1}, \ldots, t_{n}$).
These cash-flows can be positive (representing returns) or negative (representing costs or losses)
3.2 Net Present Value (NPV)

Using an effective interest rate i, the net present value of an investment project with n cash-flows is the sum of the discounted cash-flows, namely

$$
\begin{aligned}
\operatorname{NPV}(i) & =\sum_{k} \frac{C_{k}}{(1+i)^{k}} \\
& =C_{0}+\frac{C_{1}}{(1+i)^{1}}+\cdots+\frac{C_{n}}{(1+i)^{n}}
\end{aligned}
$$

Example
A project requires an initial of $\$ 1000$ now, and it will return $\$ 800$ in 2 years and $\$ 1100$ in 5 years. Compute NPV(0.05)?

Example
A project requires an initial of $\$ 500$ now and $\$ 700$ in 3 years, and will return $\$ 1000$ in 2 years and \$1200 in 4 years.
Compute NPV(0.08)?
3.3 Internal rate of return (IRR)

The IRR for a project is the annual effective rate of interest in such that

NPV (i) $=0$

Example
A project requires an initial of $\$ 1000$ now, and it will return $\$ 800$ in 2 years and $\$ 1200$ in 4 years. Find the IRR.
3.4 Investment Fund:

An investment fund usually is a firm that invests the pooled funds of investors for a fee. In this section we examine a method of determining the interest rate earned by an investment fund.
In practice, it is common for a fund to be incremented with new principal deposits, decremented with principal withdrawals, and incremented with interest earnings many times throughout a period.

We have:
$A=$ the amount in the fund at the beginning of the period, i.e. $t=0$.
$B=$ the amount in the fund at the end of the period, i.e. $t=1$.
I = the amount of interest earned during the period.
$c_{t}=$ the net amount of principal contributed at time t (inflow less outflow at time t) where $0<t<1$.
$C=$ total net amount of principal contributed during the period.
3.4.1 Dollar Weighted Rate of Return (DWRR)
The DWRR is the return rate earned by an investment fund during a period (one year in general.
By a simple interest approximation, we obtain

$$
D W R R=\frac{B-A-C}{A+\sum_{t} C_{t}(1-t)}
$$

Example

The fund value at the beginning of the year is $\$ 10000$ and at the end of the $3^{\text {rd }}$ month, $\$ 2000$ was invested (added), and at the end of the $7^{\text {th }}$ month, $\$ 1500$ was withdrawn. At the end of the year, the fund value is $\$ 12000$. Find DWRR?
3.4.2 Time Weighted Rate of Return (TWRR)

The dollar-weighted rate of interest depends on the precise timing and amount of the cash-flows. In practice, professional fund managers who direct investment funds have no control over the timing or amounts of the external cash flows. Therefore, if we are comparing the performance of different fund managers, the dollar weighted rate of interest does not always provide a fair comparison.

In this section, we consider an alternative measure of performance that does not depend on the size or the timing of the cash flows, namely the time-weighted rate of interest also known as the time-weighted rate of return.

Suppose m deposits or withdrawals are made during a year at times $t_{1}, t_{2}, \ldots, t_{m}$ (so that no contributions at $t_{0}=0$ and $t_{m+1}=1$). Thus, the year is divided into $m+1$ subintervals. For $k=1,2, \ldots, m+1$ we let j_{k} be the yield (return) rate over the $\mathrm{k}^{\text {th }}$ subinterval.
For $k=1, \ldots, m$ let $C_{t_{k}}$ be the net contribution at exact time t_{k} and $B_{t_{k}}$ the value of the fund before the contribution at time t_{k} : Note that $C_{0}=C_{m+1}=0$ and B_{0} is the initial investment and B_{1} is the value of the fund at the end of the year.

The yield rate of the fund from time t_{k-1} to time t_{k} satisfies the equation of value

$$
\boldsymbol{B}_{t_{k}}=\mathbf{1}+\dot{j}_{k}\left(\boldsymbol{B}_{t_{k-1}}+C_{t_{k-1}}\right)
$$

or

$$
1+j_{k}=\frac{B_{t_{k}}}{B_{t_{k-1}}+C_{t_{k-1}}}
$$

$k=1,2, \ldots, m+1$.
The overall yield rate i for the entire year is given by $1+$ TWRR $=\left(1+j_{1}\right)\left(1+j_{2}\right) \ldots\left(1+j_{m+1}\right)$

Or

$$
\text { TWRR }=\left(1+j_{1}\right)\left(1+j_{2}\right) \ldots\left(1+j_{m+1}\right)-1
$$

Example

At the start of the year, the fund value is $\$ 10000$ and at the end of the $3^{\text {rd }}$ month, the fund value is $\$ 11000$ and $\$ 2000$ was added. At the end of the $7^{\text {th }}$ month, the fund value is $\$ 10000$ and $\$ 1500$ was withdrawn. The fund value at the end of the year is $\$ 12000$. Compute TWRR?

Example

At January $1^{\text {st }}$, the fund value is $\$ 12000$. and at April $1^{\text {st }}$ the fund value $\$ 13000$ and $\$ 2000$ was withdrawn.
At August $1^{\text {st }}$ the fund is $\$ 10000$ and $\$ 3000$ was added and at the end of the year the fund value is $\$ 14000$.
Compute DWRR and TWRR?

