Motion in one

Dimension
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2.1 Position, Velocity, and Speed:

A particle’s position x is the location of the particle with respect to a chosen
reference point that we can consider to be the origin.

« The object’s position is its location with respect to a chosen reference point

« Consider the point to be the origin of a coordinate system

» Inthe diagram, allow the road sign to be the reference point

» The position-time graph shows the motion of the particle (car)

» The smooth curve is a guess as to what happened between the data points
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- 2.1 Position, Velocity, and Speed:

TABLE 2.1

« The table gives the actual data Position of the Car

collected during the motion of the at Various Times

object (car) Position t(s) x (m)
—_ - . - @ O 30
 Positive is defined as being to the 10 59
right © 40 %
®) 30 0

® 40 —37

® 50 —53
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2.1 Position, Velocity, and Speed:

The displacement Ax of a particle is defined as its change in position in some time interval. As
the particle moves from an initial position x; to a final position x; , its displacement Is given by
Ax = xp — x; (1)

* \We use the capital Greek letter delta (A) to denote the change in a quantity.

Ax 1s positive If x¢ Is greater than x;.

Ax 1s negative If xris less than x;.

Sl units are meters (m)

Displacement is an example of a vector quantity.

« Many other physical quantities, including position, velocity, and acceleration, also are vectors.

In this chapter,

« We use positive(+) and negative (-) signs to indicate vector direction. For example, for
horizontal motion the right is the positive direction. It follows that any object always moving
to the right undergoes a positive displacement Ax>0

* Any object moving to the left undergoes a negative displacement so that Ax<0.
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2.1 Position, Velocity, and Speed:

The average velocity v, 4,,0f a particle is defined as the particle’s displacement

Axdivided by the time interval Atduring which that displacement occurs:

Ax

Ux,avg = A_t (2)

where the subscript xindicates motion along the x axis.

The average speed v,,,, of a particle, a scalar quantity, Is defined as the total distance

dtraveled divided by the total time interval required to travel that distance:
d

Vavg = A_t (3)
The SI unit of average speed iIs the same as the unit of average velocity: meters per
second.
Unlike average velocity, however, average speed has no direction and is always expressed
as a positive number.
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2.1 Position, Velocity, and Speed:
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2.2 Instantaneous \Velocity and Speed':

« The instantaneous velocity is the slope of the line tangent to 60
the xvs. fcurve

At point A this is the green line

» The light blue lines show that as Afgets smaller, they

approach the green line -

The instantaneous velocity v,equals the limiting value of
the ratio Ax/Atas At approaches zero:

Cm e O
=N W
In calculus notation, this limit is called the aderivative of x with respect to t, writtendx /dt.
- Ax  dx 5)
Ux = A0 AL dt

The instantaneous velocity can be positive, negative, or zero.
The instantaneous speed of a particle is defined as the magnitude of its instantaneousvelocity.
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2.2 Instantaneous Velocity and Speed:
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2.2 Instantaneous Velocity and Speed:

Flgure 2.4 (Example 2.3)
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Particle Under Constant \elocity

If the velocity of a particle Is constant, its instantaneous velocity at any
Instant during a time interval is the same as the average velocity over
the interval. That IS, vy, = vy gp,4.

Therefore, Equation (2) gives us an equation to be used in the
mathematical representation of this situation:

_Ax P
=Ar (6)

Remembering thatAx = x¢ — x;, we see thatv, = (xf — x;)/At, or

X = X; + VAt

In practice, we usually choose the time at the beginning of the interval
to be t; = 0 and the time at the end of the interval to be t; = t, so our

equation becomes

Ux

X = Xi + Uyt (7)
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2.3 Acceleration:

The average acceleration ax, avg of the particle is defined as the
change in velocity Avx divided by the time interval At during which that
change occurs:

As with velocity, when the motion being analyzed is one dimensional,
we can use positive and negative signs to indicate the direction of the
acceleration.

The slope of the green line is
the instananeous accclermtion
of the car at point (B (Eq. 2. 10).

The car moves with

different vebocities at
points @ and ©. The sbope of the bluc
_____.? Ix lime connec ting &) and
4 (B is the average
_@ Eﬁ @—.‘-: acceleration of the car
i iy during the time interwl
o=y = gy i = f— & (Eq. 29)_

8
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2.3 Acceleration:

the instantaneous acceleration as the limit of
the average acceleration as At approaches zero:
)
_ Av,  do,
= a0 At @t
The acceleration at any time
equals the slope of the line
When the object’s velocity and acceleration are veres fat that e,
In the same direction, the object is speeding up. “* /’
On the other hand, when the object’s velocity . ;
. . . . . , ©
and acceleration are in opposite directions, the P N *
object is slowing down. b
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2.3 Acceleration:

deceleration negative

acceleration

speeding up () slowing down (-)
+ velocity +a -a
- velocity -2 +a
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2.3 Acceleration:

Example 2.6 Average and Instantaneous Acceleration

FIEII'-E” {Example 2.6)
The veloaiy—tme graph fora

according o the expression
o= 40 — 52

particle moving along the xaxis

The acceleration :L@ i.lcq_l.l.all.n

the slope of the green tngent
line at § = 2 5, which iz —20 m /=2,

vy (m/ s}
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2.4 Motion Diagrams.

motion diagram is sometimes useful to describe the velocity
and acceleration while an object is in motion.

This car moves at

1 " |: .. ﬂ# —— — — —
consiant velocl ZEeTO
B U @gle Sile Hile Sl ol

acceleration).

This car has a constant 1 e e - —
acceleradon in the o b w m m
direction of its velocity.

0 - - -
This car has a ) — —— i - -
constant acceleration | B Iﬁ ﬁ Iﬁ m
in the directdon

1 - g - - g

opposite its velocity.
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Position. Vs. Time graphs

T : . . Position vs. Time
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Velocity (m/s)
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Velocity-time graphs

Velocity vs. Time
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2.6 1D Montion Under Constant Acceleration.:
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2.6 1D Montion Under Constant Acceleration.:

A very simple type of one-dimensional motion is that in which the
acceleration Is constant. The average acceleration ax,avg OvVer any
time interval is equal to the instantaneous acceleration ax at any
Instant within the interval.

Av

If we replace ax,avg by ax In ay 4,y = " and take ti = O and tr to

be any later time t, we find that:
Uxf — Uxi
t—0

a, =
or
Uxr = Uy + axt (forconstsnta,) (1)

Ay 3 g (3 dana ala¥) daaly




2.6 1D Montion Under Constant Acceleration.:

we can express the average velocity in any time interval as the

arithmetic mean of the initial velocity vxi and the final velocity vxf :
VUyi + vxf
Uy avg = > (for constsnt a,.)

Notice that this expression for average velocity applies only if the
acceleration is constant.

To obtain the position of an object as a function of time, Recalling
that Ax IN vy g5 = i—’: represents xf — xi and recognizing that At
=tf —ti =t — 0 = t,we find that:

Xf — Xi = Uy qugl = %(vxi + vxf)t

1
X =x; + > (vy + vxf)t (for constant a,.) (2)
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2.6 1D Montion Under Constant Acceleration.:

We can obtain another useful expression for the position of a particle
under constant acceleration by substituting Equation (1) into Equation

(2):

1
Xp = x; + > Vi + (U + a,t)]t

1
Xp = X; + Uyt + Eaxt2 (for constant a,) (3)

Finally, we can obtain an expression for the final velocity that does
not contain time as a variable by substituting the value of ¢t from
Equation (1) into Equation (2):

ax
vf =v? + Zax(xf —x;) (for constant a,) (4)
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2.6 1D Montion Under Constant Acceleration.:

For motion at zero acceleration, we see from Equations (1) and (3) that:
Uf T Tni T ﬂ:} when a, = 0
Xp= X; T Uyl
That is, when the acceleration of a particle is zero, its velocity is constant
and its position changes linearly with time.

@ CINFFRD Kinematic Equations for Motion of a Particle

Under Constant Acceleration

Equation

Number Equation Information Given by Equation

2.13 Uy = Uy + a1 Velocity as a function of time

2.15 Xp= x; T %(ﬂﬂ + ﬂxf}t Position as a function of velocity and time
2.16 Xp= x; + vt + %ﬂxig Position as a function of time

2.17 ﬂxf = 'ﬂx,-g T de(xf — x;) Velocity as a function of position

Note: Motion is along the x axis.




2.6 1D Montion Under Constant Acceleration.:
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2.6 1D Montion Under Constant Acceleration.:
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2.7 Free Fall

In the absence of air resistance, all objects dropped near the Earth’s surface fall
toward the Earth with the same constant acceleration under the influence of the
Earth’s gravity.

When we use the expression freely falling object, we do not necessarily refer to
an object dropped from rest.

Objects thrown upward or downward and those released from rest are all falling
freely once they are released. Any freely falling object experiences an
acceleration directed downward, regardless of its initial motion.

We shall denote the magnitude of the free-fall acceleration by the symbol g.
The only modification for freely falling objects that we need to make in these
equations is to note that the motion is in the vertical direction (the y direction)
rather than in the horizontal direction(x) and that the acceleration is downward
and has a magnitude of 9.80 m/s2. Therefore, we choose ay = -g =—9.80 m
/s?, where the negative sign means that the acceleration of a freely falling
object is downward.
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( Example 2.10 ] Mot a Bad Throw for a Rookie!

A svone thrown from the top of a building is given an initial veloc-

ity of 2000 m,/s straight upward. The stone is launched 50.0 m above tg = 2.04 s
the ground, and the stone just misses the edge of the roof on its way L Ya = 20.4m
down as shown in Figure 2.14. i E ;‘:g - clg_ﬂ,,} S
(A) Using tm = O as the time the stone leaves the thrower’s hand at : :
position @), determine the time at which the stone reaches its maxi- H :
mum height. p |
b= 0 P
Y — O : :
o = 20.0 m/
o — To 80 mss? | | @ tg=408s
F 3 [y g ' ¥ — o
-y : Ueem = —2000 mi's
v r ] 1 — — . o =z
(B) Find the maximum height of the stone. | P! | e TEEemas
' l
I
I
¥
I
1
l
] ] F L} F ] i
(C) Determine the velocity of the stone when it returns to the height from which it was thrown. |
1
: D i = 500s
T, — — ZFF.5 MmN
S0.0m : iLE: — 290 ms
: @y = —9.80 m. s
l
I
(D) Find the velocity and position of the stone at £ = 5.00 s, i
l
I
i ty = 5.83 s
: Y= —bH0.0m
* LB = —37.1 m/s

g g = —9.80 m/ s



