Exercises on Electric potential

Question (1):

(a) Find the potential at a distance of 3 cm from a proton.
(b) What is the potential difference between two points that are 1 cm and 2 cm from a proton? $\left(\mathrm{k}_{\mathrm{e}}=9 \times 10^{9} \mathrm{Nm}^{2} / \mathrm{C}^{2}\right)\left(\mathrm{e}=1.6 \times 10-{ }^{19} \mathrm{C}\right)$

Question (2):

Two point charges $\mathrm{Q}_{1}=+5 \mathrm{nC}$ and $\mathrm{Q}_{2}=-3 \mathrm{nC}$ are separated by 50 cm .
(a) What is the potential energy of the pair?
(b) What is the electric potential at a point midway between the charges?

Question (3):

How much work is required to move a charge of 4 nC from a point 2 m away to a point 0.5 m away from a point charge of 60 nC ? What is the potential difference between these points?

Question (4):

The difference in potential between the accelerating plates in the electron gun of a TV picture tube is about 25000 V . If the distance between these plates is 1.50 cm , what is the magnitude of the uniform electric field in this region?

Question (5):

Suppose an electron is released from rest in a uniform electric field whose magnitude is $5.90 \times 10^{3} \mathrm{~V} / \mathrm{m}$. (a) Through what potential difference will it have passed after moving 1.00 cm ? (b) How fast will the electron be moving after it has travelled 1.00 cm ?

Question (6):

At a certain distance from a point charge, the magnitude of the electric field is $500 \mathrm{~V} / \mathrm{m}$ and the electric potential is -3.00 kV . (a) What is the distance to the charge? (b) What is the magnitude of the charge?

Question (7):

The three charges in the following Figure are at the vertices of an isosceles triangle. Calculate the electric potential at the midpoint of the base, taking $\mathrm{q}=7.00 \mu \mathrm{C}$.

