8.2 Analysis Model: Isolated System (Energy)

conservative force	
$e.g: F_g = mg$	$e.g: f_s = \mu_s n$
acts on an isolated system	acts on a non-isolated system
Caused no change of a mechanical energy	Caused a change in a mechanical energy
$\Delta E_{\mathrm{mech}} = 0$	$\Delta E_{ m mech} = E_{ m int}$
$E_{f,mech} = E_{i,mech}$	$\Delta E_{\rm mech} = - f_{\rm s}. d$
	$\mathrm{E_{f,mech}} eq \mathrm{E_{i,mech}}$
$E_{mech} = K + U$	$E_{f,mech} = E_{i,mech} + E_{int}$
$\Delta E_{mech} = \Delta K + \Delta U = 0$	$\Delta E_{\text{mech}} = \Delta K + \Delta U = -f_{\text{s}}. d$
$\Delta K = -\Delta U$	$\mathbf{W}_{\text{net}} = \Delta \mathbf{E}_{\text{mech}} = \Delta \mathbf{K} + \Delta \mathbf{U} = -\mathbf{f}_{\text{s}}.\ \mathbf{d}$
$W_{\text{net}} = \Delta K$	
$W_{\text{net}} = -\Delta U$	
القصير 101 phys	جامعة الامام محمد بن سعود الإسلامية أ. سجى

A spring has potential energy, called elastic potential energy, when it is compressed. The force required to compress or stretch a spring is:

$$F_{\rm S} = -kx$$

where k is called the spring constant.

The potential energy is:
$$U_{\rm el}(x) = \frac{1}{2}kx^2$$
.