106 PHYS - Homework 1

Chapter 1 Sources of the Magnetic Field

Chapter 30 in the text book

1. Calculate the magnitude of the magnetic field at a point 100 cm from a long, thin conductor carrying a current of 1.00 A .
2. A conductor in the shape of a square loop of edge length $1=0.40 \mathrm{~m}$ carries a current $\mathrm{I}=10.0 \mathrm{~A}$ as shown in figure.
(a) Calculate the magnitude and direction of the magnetic field at the center of the square. (b) If this conductor is formed into a single circular turn and carries the same current, what is the value of the magnetic field at the center?

3. The segment of wire in the opposite figure carries a current of $I=5.0$ A , where the radius of the circular arc is $\mathrm{R}=3.0 \mathrm{~cm}$. Determine the magnitude and direction of the magnetic field at the origin.

4. Two long, parallel conductors, separated by 10.0 cm , carry currents in the same direction. The first wire carries current $\mathrm{I}_{1}=5.00 \mathrm{~A}$ and the second carries $\mathrm{I}_{2}=8.00 \mathrm{~A}$.
(a) What is the magnitude of the magnetic field created by I_{1} at the location of I_{2} ?
(b) What is the force per unit length exerted by I_{1} on I_{2} ?
5. What current is required in the windings of a long solenoid that has 1000 turns uniformly distributed over a length of 0.40 m , to produce at the center of the solenoid a magnetic field of magnitude $1.0 \times 10^{-4} \mathrm{~T}$?
6. A solenoid 2.5 cm in diameter and 3.0 cm long has 300 turns and carries 12.0 A current. Calculate the flux through the surface of a disk of radius 5.0 cm that is positioned perpendicular to and centered on the axis of the solenoid as shown in the figure.

7. A 0.10 A current is charging a capacitor that has square plates 5.0 cm on each side. The plate separation is 4.0 mm . Find (a) the time rate of change of electric flux between the plates and (b) the displacement current between
8. A cube of edge length $\mathrm{l}=2.50 \mathrm{~cm}$ is positioned as shown in the following figure. A uniform magnetic field given by $B=(5 i+4 j+3 k) T$ exists throughout the region. (a) Calculate the flux through the shaded face. (b) What is the total flux through the six faces?

