16 - A particle moves along the xaxis according to the equation $x=\left(3.00 t^{2}-2.00 t+3.00\right)$, where x is in meters and t is in seconds.

Determine

(a) the average speed between $t=2 \mathrm{~s}$ and $t=3 \mathrm{~s}$,
(b) the instantaneous speed at $t=2 \mathrm{~s}$ and at $t=3 \mathrm{~s}$,
(c) the average acceleration between $t=2 \mathrm{~s}$ and $t=3 \mathrm{~s}$, and
(d) the instantaneous acceleration at $t=2 \mathrm{~s}$ and $t=3 \mathrm{~s}$.
(a) At $t=2.00 \mathrm{~s}, x=\left[3.00(2.00)^{2}-2.00(2.00)+3.00\right] \mathrm{m}=11.0 \mathrm{~m}$.

$$
\text { At } t=3.00 \mathrm{~s}, x=\left[3.00(9.00)^{2}-2.00(3.00)+3.00\right] \mathrm{m}=24.0 \mathrm{~m}
$$

so

$$
\bar{v}=\frac{\Delta x}{\Delta t}=\frac{24.0 \mathrm{~m}-11.0 \mathrm{~m}}{3.00 \mathrm{~s}-2.00 \mathrm{~s}}=13.0 \mathrm{~m} / \mathrm{s} .
$$

(b) At all times the instantaneous velocity is

$$
v=\frac{d}{d t}\left(3.00 t^{2}-2.00 t+3.00\right)=(6.00 t-2.00) \mathrm{m} / \mathrm{s}
$$

$$
\begin{aligned}
\text { At } t & =2.00 \mathrm{~s}, v=[6.00(2.00)-2.00] \mathrm{m} / \mathrm{s}=10.0 \mathrm{~m} / \mathrm{s} \\
\text { At } t & =3.00 \mathrm{~s}, v=[6.00(3.00)-2.00] \mathrm{m} / \mathrm{s}=16.0 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

(c) $\bar{a}=\frac{\Delta v}{\Delta t}=\frac{16.0 \mathrm{~m} / \mathrm{s}-10.0 \mathrm{~m} / \mathrm{s}}{3.00 \mathrm{~s}-2.00 \mathrm{~s}}=6.00 \mathrm{~m} / \mathrm{s}^{2}$
(d) At all times $a=\frac{d}{d t}(6.00-2.00)=6.00 \mathrm{~m} / \mathrm{s}^{2}$. (This includes both $t=2.00 \mathrm{~s}$ and $t=3.00 \mathrm{~s}$).
33. An electron in a cathode ray tube (CRT) accelerates from 2×10^{4} m / s to $6 \times 10^{6} \mathrm{~m} / \mathrm{s}$ over 1.50 cm .
(a) How long does the electron take to travel this 1.50 cm ?
(b) What is its acceleration?

We have $v_{i}=2.00 \times 10^{4} \mathrm{~m} / \mathrm{s}, v_{f}=6.00 \times 10^{6} \mathrm{~m} / \mathrm{s}, x_{f}-x_{i}=1.50 \times 10^{-2} \mathrm{~m}$.
(a)

$$
x_{f}-x_{i}=\frac{1}{2}\left(v_{i}+v_{f}\right): t=\frac{2\left(x_{f}-x_{i}\right)}{v_{i}+v_{f}}=\frac{2\left(1.50 \times 10^{-2} \mathrm{~m}\right)}{2.00 \times 10^{4} \mathrm{~m} / \mathrm{s}+6.00 \times 10^{6} \mathrm{~m} / \mathrm{s}}=4.98 \times 10^{-9} \mathrm{~s}
$$

(b)

$$
\begin{aligned}
& v_{f}^{2}=v_{i}^{2}+2 a_{x}\left(x_{f}-x_{i}\right): \\
& a_{x}=\frac{v_{f}^{2}-v_{i}^{2}}{2\left(x_{f}-x_{i}\right)}=\frac{\left(6.00 \times 10^{6} \mathrm{~m} / \mathrm{s}\right)^{2}-\left(2.00 \times 10^{4} \mathrm{~m} / \mathrm{s}\right)^{2}}{2\left(1.50 \times 10^{-2} \mathrm{~m}\right)}=1.20 \times 10^{15} \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

43. A student throws a set of keys vertically upward to her sorority sister, who is in a window 4.00 m above. The keys are caught 1.50 s later by the sister's outstretched hand.
(a) With what initial velocity were the keys thrown?
(b) What was the velocity of the keys just before they were caught?
(a) $\quad y_{f}-y_{i}=v_{i} t+\frac{1}{2} a t^{2}: 4.00=(1.50) v_{i}-(4.90)(1.50)^{2}$ and $v_{i}=10.0 \mathrm{~m} / \mathrm{s}$ upward
(b) $\quad v_{f}=v_{i}+a t=10.0-(9.80)(1.50)=-4.68 \mathrm{~m} / \mathrm{s}$

$$
v_{f}=4.68 \mathrm{~m} / \mathrm{s} \text { downward }
$$

