Kingdom of Saudi Arabia

Ministry of higher Education

Al-Imam Mohammed Bin Saud Islamic University

College: Science

Department: Physics

ربهم الله الرحمن الرحيج

المملكة العربية السعودية

وزارة التعليم العالي

جامعة الإمام محمد بن سعود الإسلامية

Course Name: General Physics

Course Code:101

Semester/Year: final exam / 1435-1436

Duration: 2 houre

- 1- أجب عن جميع الأسئلة
- 2- إجابتان على نفس السؤال تلغي الدّرجة.
- 3- تكتب الإجابة بقلم الحبر في ورَّقة الأسئلة.
 - 4- مسموح: الآلة الحاسبة.

الشعبة	الرقم الجامعي	اسم الطالب

			ستاذ	خاص بالأس			
السابع	السادس	الخامس	الرابع	الثالث	الثاني	الأول	السؤ ال
6	6	4	4	6	4	10	الدرجة
							الدرجة المكتسبة

	توقيع المدقق		المجموع
--	--------------	--	---------

$$g = 9.8 \text{m/s}^2$$

$$K = 9 \times 10^9 \text{ N.m}^2/\text{C}^2$$

Question 1 (10 Points):

Please choose one correct answer and put it in the table below

1	2	3	4	5	6	7	8	9	10

1- If stone fell from the top of a building (from the rest) and reached the ground after 2.5 s. What was the height of the building?

2- A ball is thrown straight upward from ground level with an initial velocity of 20m/s. At the highest point it reaches:

3- At t=0, a particle moving in xy plane with constant acceleration has velocity of υ =(3i-2j)m/s. At t=3.0s, the particle's velocity is υ =(9i+7j)m/s. The acceleration of the particle is:

A.
$$(2i+3j)$$
 m/s²

C.
$$(4i+3j)$$
 m/s²

4- A 6 kg block initially at rest is pulled to East along a horizontal, frictionless surface by a constant horizontal force of 12 N. What is the speed of the block after it has moved 3m?

B. 2.76 m/s	D. 1.98 m/s
5- A car is moving at 40m/s. The x comvelocity?	aponent of its velocity is 30m/s. What is the y component of the
A. 10.0 m/s	C. 26.5 m/s
B. 18.7 m/s	D. 70.0 m/s
6- Consider an 80 kg man and 320 kg l The man must run:	horse both running along a road with the same kinetic energy.
A. With the same speed as the horse.B. Twice as fast as the horse.	C. 4 times as fast as the horse.D. 16 times as fast as the horse.
7. An object weighing 15 Newton is life	ted from the ground to a height of 0.22 meter. The increase in
the object's gravitational potential energy	
the object's gravitational potential ener	rgy is approximately.
A. 668.2 J	C. 3.3 J
A. 668.2 J B. B. 32.3 J	C. 3.3 J
A. 668.2 J B. B. 32.3 J	C. 3.3 J D. 68.2 J
A. 668.2 J B. B. 32.3 J 8- Two vectors A and B. If A.B= 5 wh	C. 3.3 J D. 68.2 J
A. 668.2 J B. B. 32.3 J 8- Two vectors A and B. If A.B= 5 wh magnitude B is.	C. 3.3 J D. 68.2 J here $A = (3i + 2j) \text{ m}$ and the angle between them is 300° . So, the
A. 668.2 J B. B. 32.3 J 8- Two vectors A and B. If A.B= 5 wh magnitude B is. A. 0.36 m B. 0.77 m	C. 3.3 J D. 68.2 J Here $A = (3i + 2j) \text{ m}$ and the angle between them is 300° . So, the C. 3.6 m
A. 668.2 J B. B. 32.3 J 8- Two vectors A and B. If A.B= 5 wh magnitude B is. A. 0.36 m B. 0.77 m	C. 3.3 J D. 68.2 J mere A= (3i+ 2j) m and the angle between them is 300°. So, the C. 3.6 m D. 2.78 m

A. 2.17 Kg C. 3.27 Kg

B. 6.53 Kg D. 19.6Kg

Question 2 (4 Points):

The driver of a car slams on the brakes when he sees a tree blocking the road. The car slows down uniformly with a constant acceleration of (-5.6 m/s^2) for (4.20 seconds), making straight skid marks (62.4 m) long, all the way to the tree. With what speed does the car then strike (hit) the tree?

1kg	pine cone falls $14 m$ to the ground, with initial speed of $13 m/s$.
	Note: Use conservative or non-conservative energy
A.	With what speed would the pine cone have landed if there had been no air resistance?
D	Find the annual of the half distance of the math (7 m)
В.	Find the speed at the half distance of the path (7 m)
C.	Find the acceleration of the pine.

Question 4 (4 Points):	
Vector \vec{A} has x and y components of -8 cm and 15cm, respectively (A _x = -8cm, A _y =15cm); vector \vec{B} has x and y components of 13 cm and -9 cm, respectively (B _x =13.2cm, B _y = -9 cm). If $\vec{A} - \vec{B} - 3\vec{C} = \vec{0}$.	
A. What are the components of \vec{C} ? ($C_x = ?$ and $C_y = ?$)	
B. Calculate the direction (θ) of vector \vec{C} .	

Question 5 (4 Points):
A car of mass 1100 Kg on a friction surface ($\mu_k = 0.2$) can accelerate from the rest to a speed 30 m/s in 1 minute calculate:
A. The friction force.
B. The force required by the car's engine.
Page 7 of 9

Question 6 (6 Points):

A car of mass 1300Kg slides 100m down an icy slope, the slope being inclined 30° to the horizontal. If the frictional force and air resistance are ignored

A. Show the free body diagram.

B. Calculate the acceleration of the car.

C. Calculate the total work.

Question 7 (6 points):

Three point charges, q_1 = -3 μ C and q_2 = 5 μ C are arranged as shown in figure.

A. Find the total electric field that the charges q_1 and q_2 , at point P.

B. Find the total electric force on q_3 ($q_3 = 6\mu$ C) exerted by q_1 and q_2 .

