
$g=9.8 \mathrm{~m} / \mathrm{s}^{2} \quad \mathrm{~K}=9 \times 10^{9} \mathrm{~N} . \mathrm{m}^{2} / \mathrm{C}^{2}$

Question 1 (10 Points):

Please choose one correct answer and put it in the table below

1	2	3	4	5	6	7	8	9	10

1- If stone fell from the top of a building (from the rest) and reached the ground after 2.5 s . What was the height of the building?
A. 11.875 m
B. 30.625 m
C. 33.125 m
D. 122.50 m

2- A ball is thrown straight upward from ground level with an initial velocity of $20 \mathrm{~m} / \mathrm{s}$. At the highest point it reaches:
A. The acceleration is zero
C. The velocity is zero
B. The velocity is $20 \mathrm{~m} / \mathrm{s}$
D. The acceleration is at minimum

3- At $\mathbf{t}=\mathbf{0}$, a particle moving in xy plane with constant acceleration has velocity of $\mathbf{v}=(\mathbf{3 i}-\mathbf{2 j}) \mathrm{m} / \mathrm{s}$. At $t=3.0 \mathrm{~s}$, the particle's velocity is $\mathbf{v}=(9 i+7 j) \mathrm{m} / \mathrm{s}$. The acceleration of the particle is:
A. $(2 \mathrm{i}+3 \mathrm{j}) \mathrm{m} / \mathrm{s}^{2}$
B. $(2 \mathrm{i}+1.66 \mathrm{j}) \mathrm{m} / \mathrm{s}^{2}$
C. $(4 \mathrm{i}+3 \mathrm{j}) \mathrm{m} / \mathrm{s}^{2}$
D. $(4 \mathrm{i}+1.66 \mathrm{j}) \mathrm{m} / \mathrm{s}^{2}$

4- A 6 kg block initially at rest is pulled to East along a horizontal, frictionless surface by a constant horizontal force of $\mathbf{1 2} \mathbf{N}$. What is the speed of the block after it has moved $\mathbf{3 m}$?
A. $3.46 \mathrm{~m} / \mathrm{s}$
C. $4.80 \mathrm{~m} / \mathrm{s}$
B. $2.76 \mathrm{~m} / \mathrm{s}$
D. $1.98 \mathrm{~m} / \mathrm{s}$

5- A car is moving at $40 \mathrm{~m} / \mathrm{s}$. The x component of its velocity is $30 \mathrm{~m} / \mathrm{s}$. What is the y component of the velocity?
A. $10.0 \mathrm{~m} / \mathrm{s}$
B. $18.7 \mathrm{~m} / \mathrm{s}$
C. $26.5 \mathrm{~m} / \mathrm{s}$
D. $70.0 \mathrm{~m} / \mathrm{s}$

6- Consider an 80 kg man and 320 kg horse both running along a road with the same kinetic energy. The man must run:
A. With the same speed as the horse.
C. 4 times as fast as the horse.
B. Twice as fast as the horse.
D. 16 times as fast as the horse.

7- An object weighing 15 Newton is lifted from the ground to a height of 0.22 meter. The increase in the object's gravitational potential energy is approximately:
A. 668.2 J
C. 3.3 J
B. B. 32.3 J
D. 68.2 J

8- Two vectors A and B. If $A . B=5$ where $A=(3 i+2 j) m$ and the angle between them is 300°. So, the magnitude $|\mathbf{B}|$ is.
A. 0.36 m
B. 0.77 m
C. 3.6 m
D. 2.78 m

9- The magnitude of the electric field E at a distance r from an isolated point charge q is:
A. kq / r
B. kr / q
C. $\mathrm{kq} / \mathrm{r}^{3}$
D. $\mathrm{kq} / \mathrm{r}^{2}$

10- A Skater starts from the rest on a frictionless surface. After 1 second the velocity became $\mathbf{3 m} / \mathrm{s}$; assuming that the total power was 9.8 Watt. So, the mass of the crate is:
A. 2.17 Kg
B. 6.53 Kg
C. 3.27 Kg
D. 19.6 Kg

Question 2 (4 Points):

The driver of a car slams on the brakes when he sees a tree blocking the road. The car slows down uniformly with a constant acceleration of $\left(-5.6 \mathrm{~m} / \mathrm{s}^{2}\right)$ for (4.20 seconds), making straight skid marks (62.4 m) long, all the way to the tree. With what speed does the car then strike (hit) the tree?

Question 3 (6 Points):

A 0.21 kg pine cone falls 14 m to the ground, with initial speed of $13 \mathrm{~m} / \mathrm{s}$.
Note: Use conservative or non-conservative energy
A. With what speed would the pine cone have landed if there had been no air resistance?B. Find the speed at the half distance of the path (7 m)C. Find the acceleration of the pine.

Question 4 (4 Points):

Vector \vec{A} has x and y components of -8 cm and 15 cm , respectively ($\mathrm{A}_{\mathrm{x}}=-8 \mathrm{~cm}, \mathrm{~A}_{\mathrm{y}}=15 \mathrm{~cm}$); vector \vec{B} has x and y components of 13 cm and -9 cm , respectively ($\mathrm{B}_{\mathrm{x}}=13.2 \mathrm{~cm}, \mathrm{~B}_{\mathrm{y}}=-9 \mathrm{~cm}$). If $\vec{A}-\vec{B}-3 \vec{C}=\overrightarrow{0}$.
A. What are the components of $\vec{C} ?\left(\mathrm{C}_{\mathrm{x}}=\right.$? and $\mathrm{C}_{\mathrm{y}}=$? $)$B. Calculate the direction (θ) of vector \vec{C}.

Question 5 (4 Points):

A car of mass 1100 Kg on a friction surface $\left(\mu_{\mathrm{k}}=0.2\right)$ can accelerate from the rest to a speed $30 \mathrm{~m} / \mathrm{s}$ in 1 minute calculate:
A. The friction force.B. The force required by the car's engine.

Question 6 (6 Points):

A car of mass 1300 Kg slides 100 m down an icy slope, the slope being inclined 30° to the horizontal. If the frictional force and air resistance are ignored
A. Show the free body diagram.

B. Calculate the acceleration of the car.
C. Calculate the total work.

Question 7 (6 points):

Three point charges, $q_{1}=-3 \mu \mathrm{C}$ and $q_{2}=5 \mu \mathrm{C}$ are arranged as shown in figure.

\square
A. Find the total electric field that the charges q_{1} and q_{2}, at point P .
B. Find the total electric force on $\boldsymbol{q}_{3}\left(q_{3}=6 \mu \mathrm{C}\right)$ exerted by \boldsymbol{q}_{1} and \boldsymbol{q}_{2}.

