KINGDOM OF SAUDI ARABIA

Ministry of Higher Education

Imam Mohammad Ibn Saud

Islamic University

College of Science

Department of Mathematics &

Statistics

Answer **<u>FIVE</u>** questions of the following :

- 1- Prove or disprove the following:
 - (a) A group of order $25\,\mathrm{may}$ have a subgroup of order $10\,.$
 - (b) Any group of order 12 must have an element of order 6.
 - (c) $H = \{e, \begin{pmatrix} 1 & 4 \end{pmatrix}\}$ is a normal subgroup of S_4 .
 - (d) The index of the subgroup $\langle i \rangle$ of the quaternion group Q_8 is equal 2.
- 2- Find two subgroups of $D_{\!_4}$ each of order 2 one is normal and one is not.
- 3- Find the distinct left cosets of the subgroup $H = \{e, \alpha, \alpha^2, \alpha^3\}$ of D_4 .
- 4- Find the zero divisors of the ring \mathbb{Z}_{20} .
- 5- Let $S = \{0, 2, 4, 6, 8, 10, 12\}$ be a subring of \mathbb{Z}_{14} : (a) Show that S has unity. (b) Which elements of S have multiplicative inverses?.

6- Is
$$S = \left\{ \begin{bmatrix} x & x \\ 2x & 2x \end{bmatrix} : x \in \mathbb{Z} \right\}$$
 a subring of $M_2(\mathbb{Z})$?.

7- Prove that the order of an element of a finite group divide the order of the group.

1434/1435 Second Semester

Course Code &Number: Mat 321

Course Title: Modern Algebra

Date of Exam: 22-6-1435H

Midterm 1

Duration: 1H15