MAT 113

EXAM DURATION 1H15

Midterm 2

10/12/2017

Question 1. [2+2+2 marks]

Find the derivatives of the following functions:

$$1) f(x) = e^{\sin 4x},$$

2)
$$g(x) = x^3(\cos^2 x + 2)$$
,

1)
$$f(x) = e^{\sin 4x}$$
, 2) $g(x) = x^3(\cos^2 x + 2)$, 3) $h(x) = \frac{x^2}{\ln(x^2 + 2)}$.

Question 2. [1+1 marks]

Consider the function f defined by $f(x) = x^4 - x^3 + 1$.

- 1) Verify that f satisfies the conditions of Rolle's theorem on the interval [0, 1].
- 2) Find a value of c satisfying the conclusion of Rolles's theorem on the interval [0, 1].

Question 3. [2 marks]

Use implicit differentiation to find y' if $x^3y^3 - 2x^2 - 5y = 0$.

Question 4. [1+2+1 marks]

Use l'Hôpital's rule to compute the following limits:

1)
$$\lim_{x \to 2} \frac{\ln(3-x)}{x-2}$$

1)
$$\lim_{x \to 2} \frac{\ln(3-x)}{x-2}$$
, 2) $\lim_{x \to 0} \frac{\cos x - 3x^2 - 1}{x^2}$, 3) $\lim_{x \to -\infty} \frac{3x}{e^{-2x}}$.

3)
$$\lim_{x \to -\infty} \frac{3x}{e^{-2x}}.$$

Question 5. [1+1+2+2 marks]

Let
$$f(x) = 3x^4 - 4x^3 + 2$$
.

- 1) Find all critical numbers of the function f.
- 2) Find the absolute extrema of the function f on the interval [-1, 2].
- 3) Determine the intervals on which the function f is increasing and the ones where f is decreasing.
- 4) Find the local extrema of the function f.