

Duration: 75 minutes

Midterm 1

QUESTION 1 [$8=3+3+2$ marks]

Let P, Q and R be three statements.

1. Use the truth table to prove that the following compound statements are logically equivalent: $\neg(P \wedge \neg Q) \Rightarrow P \equiv P$
2. Prove the following logical equivalence using the stated laws
(without truth table): $(P \Rightarrow Q) \Rightarrow Q \equiv P \vee Q$
3. Give the inverse of the conditional statement: $P \Rightarrow \neg(Q \vee R)$

QUESTION $2[5=2+3$ marks]

1- Determine whether the following statement is a tautology, a contradiction, or neither:
$(P \Rightarrow Q) \vee(Q \Rightarrow P)$
2. Let $\mathrm{P}(\mathrm{x})$ and $\mathrm{Q}(\mathrm{x})$ be open sentences in x with nonempty universe U .

Give the negation of quantified statement: $(\exists x)(P(x) \Rightarrow \neg Q(x))$

QUESTION 3 [$7=3+2+2$ marks]

1. Let m and n be integers. Prove that the integer $m^{2}\left(n^{2}-1\right)$ is even if and only if m is even or n is odd.
2. Use the proof by cases to show the statement: If n is an integer number, then $n^{2}+5 n+11$ is odd.
3. Prove, by the principle of mathematical induction, that:
$1 \times 2 \times 3+2 \times 3 \times 4+\cdots+n(n+1)(n+2)=\frac{n(n+1)(n+2)(n+3)}{4}, \quad \forall n \geq 1$

Extra exercise (bonus) [3 marks]:

Prove, by the principle of mathematical induction, that:

$$
1^{3}+2^{3}+\cdots+n^{3}=\frac{n^{2}(n+1)^{2}}{4}, \quad \forall n \geq 1
$$

