KINGDOM OF SAUDI
ARABIA
Course Code \&Number: Mat 321
Ministry of Higher Education
Imam Mohammad Ibn Saud
Islamic University

Course Title: Modern Algebra
Date of Exam:: 17-5-1435H
Midterm 1
Duration: 1H15
Department of Mathematics \& Statistics

Answer FIVE questions of the following :

1- Find all subgroups and all generators of the additive group \mathbb{Z}_{30}.

2-(i) Prove that every cyclic group is Abelian.
(ii)Is the group $G=\{1,3,7,9\}$ cyclic with respect to the operation
\odot defined as $a \odot b=a b(\bmod 10)$ for every $a, b \in G$.

3- (i) List all the elements of the subgroup $\langle[3]\rangle$ in the group \mathbb{Z}_{11}^{*} under multiplication, and state what is $O([4])$.
(ii)Prove or disprove: A finite group of even order contains an odd number of elements of order greater than 2.

4-(i) Show that $\varphi: \mathbb{R}^{*} \rightarrow \mathbb{R}^{*}$ defend by $\varphi(x)=\frac{|x|}{x}$ is an endomorphism and find its kernel and image.
(ii)If $\varphi: \mathbb{Z}_{6} \rightarrow \mathbb{Z}_{7}^{*}$ is an isomorphism then what is the value of $\varphi([3])$ (i.e what is the image of the element [3]).

5- Consider the additive group \mathbb{Z}_{20} and define $f: \mathbb{Z}_{20} \rightarrow \mathbb{Z}_{20}$ by $f([x])=[4 x]$. Prove that f is a homomorphism and find ker f. Is f an epimorphism? Is f a monomorphism?

6-(i) Express the following permutation as a product of disjoint cycles and then find its order and decide whether the permutation is even or odd. $\alpha=\left(\begin{array}{llllllll}1 & 3 & 2 & 4\end{array}\right)\left(\begin{array}{llll}1 & 7 & 6 & 2\end{array}\right)$.
(ii)Find $Z\left(S_{3}\right)$.

