Kingdom of Saudi Arabia
 Ministry of Education

Al-Imam Mohammad Ibn Saud

Islamic University
--- College of Science ---

Department: Mathematics \& Statistics
Semester/Year: First /1436-1437

المملكة العربية السعودية وزارة التعليم
جامعة الإمام محمد بن سعود الإسلامية
كلية العلوم
قسم الرياضيات و الإحصاء

Course Elements of sets and structures

Duration: 75 minutes

Midterm 1

NAME: ID:

QUESTION 1 [$8=3+2+3$ marks]
Let P, Q and R be three statements.

1. Prove that the following compound statements are
logically equivalent: $\quad(\neg P \wedge Q) \vee(P \wedge \neg Q) \equiv(P \vee Q) \wedge(\neg P \vee \neg Q)$

2-Complete the following with T or F :

P	Q	R	$(P \vee Q) \Rightarrow \neg R$
F	$\ldots \ldots \ldots .$.	$\ldots \ldots \ldots$	F

3. Without using the truth table, prove that the following statement is tautology

$$
[(P \vee Q) \wedge(P \Rightarrow R) \wedge(Q \Rightarrow R)] \Rightarrow R
$$

QUESTION 2 [$5=2+2$ marks]

1- Determine whether the following statement is a tautology, a contradiction, or neither:

$$
[P \wedge(P \Rightarrow Q)] \Rightarrow Q
$$

2. Let $\mathrm{P}(\mathrm{x})$ and $\mathrm{Q}(\mathrm{x})$ be open sentences in x with nonempty universe U . Give the negation of quantified statement: $(\exists x)(P(x) \vee \neg Q(x))$
3. Let m and n be integers. Prove that the integer $m^{2}+n^{2}$ is even if and only if m and n are both even integers or m and n are both odd integers .
4. Let m and n be two integers. Prove, by a direct proof, that:

If m and n are both odd integers, then $5 m+7 n+2$ is an even integer..
3. Prove, by the principle of mathematical induction, that:
$\frac{2}{1 \times 3}+\frac{2}{3 \times 5}+\cdots+\frac{2}{(2 n-1) \times(2 n+1)}=\frac{2 n}{2 n+1}, \quad \forall n \geq 1$

