Kingdom of Saudi Arabia Ministry of higher Education Al-Imam Mohammad Ibn Saud Islamic University

College of Science

Department of Mathematics and Statistics

Academic year: 2015 - 2016 First Semester

MIDTERM I

المملكة العربية السعودية وزارة التعليم العالي جامعة الإمام محمد بن سعود الإسلامية

كلية العلوم

قسم الرياضيات والإحصاء

العام الدراسي: ١٤٣٦ – ١٤٣٧ الفصل الأول

Course name: Calculus I
Course code: Mat 13
Duration: 1 hours

Name
الاسم
Student ID
الرقم الجامعي
Section
الشعبة
Class time
وقت المحاضرة
Class instructor
أستاذ الشعبة

.

Question 1) (6 points)

Compute the following limits:

a)
$$\lim_{x\to 2} \frac{x^2-4}{x^2-2x}$$

b)
$$\lim_{x \to 2} \frac{\sqrt{x^2 + 5} - 3}{x - 2}$$

c)
$$\lim_{x \to 0} \frac{x^2}{\sin x}$$

$$\mathrm{d)} \lim_{x\to\infty} e^{-x^2}$$

Question 2) (4 points)

(a) Consider the following function:

$$f(x) = \begin{cases} 3 & : x < 1 \\ ax + 1 & : x \ge 1 \end{cases}$$

Find the value of a that would make f continuous at x = 1.

(b) Determine all vertical and horizontal asymptotes of $f(x) = \frac{2x^2 + 1}{x^2 - 2x - 8}$.

Question 3) (6 points)

Find the derivative of the following functions:

a)
$$f(x) = (3x+1)^5 . \sqrt{x}$$

b)
$$f(x) = \frac{3x-2}{x^2+1}$$

$$c) \quad f(x) = \cos^2 3x$$

Question 4) (4 points)

a) Find the equation of the tangent to $f(x) = 2x^3 - \frac{5}{x} + 2\sqrt{x}$ at x = 1.

b) Let $f(x) = \begin{cases} 2x+1 & : x < 0 \\ 3x+1 & : x \ge 0 \end{cases}$

Determine whether or not f is differentiable at x = 0, and if yes, then find f'(0).