Kingdom of Saudi Arabia Ministry of higher Education Al-Imam Mohammad Ibn Saud Islamic University --- College of Science ---

Mathematics & Statistics Department: Semester/Year: First /1435-1436

Duration: 90 minutes

بيهم الله الرحمن الرحيم

Course Name: Applied Calculus (I)

Course Code: MAT113

Instructions:

Cell phones, calculators and any other devices are NOT ALLOWED in the exam.

Midterm 1

QUESTION 1 [4=0.5+0.5*5+1 points]: Let f be the function represented by the graph

- 1) Find the domain of f.
- 2) Compute each of the following limits (if the limit does not exist, explain why)

- b) $\lim_{x \to 0^{-}} f(x)$ c) $\lim_{x \to 0^{+}} f(x)$ d) $\lim_{x \to 1^{+}} f(x)$ e) $\lim_{x \to 1^{-}} f(x)$.

3) Determine the points where f is discontinuous.

OUESTION 2 [3=3*1 points]: Compute each of the following limits (if the limit does not exist, explain why):

1)
$$\lim_{x \to -3} \frac{x^2 - x + 12}{x + 3}$$
 2) $\lim_{x \to 1} \frac{|x - 1|}{x - 1}$

2)
$$\lim_{x \to 1} \frac{|x-1|}{x-1}$$

3)
$$\lim_{x \to 4} \frac{4-x}{2-\sqrt{x}}$$
.

QUESTION 3 [2 points]: For what value of a is the function f continuous where

$$f(x) = \begin{cases} ax - 1 & if \ x < 2 \\ ax^2 - 2 & if \ x \ge 2. \end{cases}$$

QUESTION 4 [4= 2*2 points]: Find all horizontal and vertical asymptotes of the function

$$f(x) = \frac{x^2 + 2x + 1}{1 - x^2}.$$

QUESTION 5 [3 points]: Use the Intermediate Value Theorem to show that there is a root of that the equation: $x^3 - 2x^2 + 5 = e^x$ in the interval [-2,1].

QUESTION 6 [4=4*1 points]: Find the derivative of f, if

1)
$$f(x) = \ln(2x+1)$$
; **2**) $f(x) = x^8 \cos(3x)$; **3**) $f(x) = \sqrt{x}e^{-2x}$; **4**) $f(x) = \frac{x}{2x+1}$.

Extra exercise (bonus) [**2 points**]: Let f(x) be a function such that: $\frac{\sin(2x)}{x} < f(x) \le 2 + x^2$, for all $x \in (-1,1)$. Find $\lim_{x\to 0} f(x)$.