Ministry of Education
Al-Imam Mohammed Ibn Saud Islamic University College of Science

Department of Mathematics and Statistics

Course Name: Graph Theory and
Combinatorics
Course Code: Mat 651
Semester/Year: Second/1436-1437
Date/Time: 22-6-1437 / 8:00 am
Duration: 120 min's

Instructions: Ordinary calculators are allowed.

Answer Two parts from each of the following questions:

Question $1[4+4=8 \mathrm{marks}]$

(a)How many strings of five lowercase letters from the English alphabet contains the letters x and y ?
(b)Build a generating function for the sequence $a_{n}=n^{2}$ and use this or any other way to find a closed form for the sum: $1^{2}+2^{2}+\ldots+n^{2}$.
(c)Solve the recurrence relation $a_{n}-3 a_{n-1}-4 a_{n-2}=n$ subject to $a_{0}=1, a_{1}=2$.

Question $2[3+3=6 \mathrm{marks}]$

(a)Find the coefficient of x^{20} in the expansion of $\left(x^{2}+x^{3}+x^{4}+\ldots\right)^{4}$.
(b)Find the number of integer solutions to the equation $x_{1}+x_{2}+x_{3}+x_{4}=40$ with $x_{1} \geq 0, x_{2} \geq 5,2 \leq x_{3} \leq 7$ and $5 \leq x_{4} \leq 10$.
(c) For $0 \leq k \leq m \leq n$, prove that $\binom{n}{m}\binom{m}{k}=\binom{n}{k}\binom{n-k}{m-k}$.

Question 3 [4+4=8 marks]

(a)Given 6 different Arabic books, 5 different English books and 4 different French books. How many ways are there to make a row of three books in which exactly one language is missing (the order of the three books make a difference).
(b)Let $\Sigma=\{0,1,2,3,4\}$ be an alphabet. How many word of length 20 from Σ that contains an even number of zero's?
(c)How many positive integers not exceeding 5^{6} that are square or cube?

Question 4 [$4+4=8$ marks]

(a)Use the generating function to solve the recurrence relation $a_{n}-6 a_{n-1}+9 a_{n-2}=2^{n-2}$ with initial conditions: $a_{0}=2$ and $a_{1}=8$.
(b)Find a closed form for the generating function for the following sequences:
(i) $a_{n}=\frac{1}{(n+1)!}$
(ii) $0,1,-\frac{1}{2}, \frac{1}{3},-\frac{1}{4}, \ldots$
(c) Evaluate the sum: $\sum_{k=0}^{n}\binom{r+k}{k}$ and if $0 \leq m \leq n$ then prove that $\sum_{k=0}^{n}\binom{n-k}{m-k}=\binom{n+1}{m}$.

(End Questions ${ }^{63}$ Good Luck)

