Ministry of Education
Al-Imam Mohammad Ibn Saud Islamic University
College of Science
Department of Mathematics and Statistics

Course Name: Combin. and Graphs Course Code: MAT 354

Semester/Year: Second/1437-1438H
Date/Time: 26-08-1438H / 8:00 am
Duration: 2 Hours

Instructions: Only ordinary calculators are allowed.

Final Exam
$22 \backslash 05 \backslash 2017$

Name	ID	section

Q1		$\mathbf{8}$
Q2		$\mathbf{8}$
Q3		$\mathbf{8}$
Q4		$\mathbf{8}$
Q5		$\mathbf{8}$
Total		40

Question 1:

a) (3pts)How many positive integers from 1000 and 5000 are not divisible by both 9 and 11?
b) (2pts) What is the minimum number of students in a school to be sure that at least six were born in the same month?
c) ($3 \mathbf{p t s})$ What is the coefficient of x^{20} in the expansion of $\left(x^{2}+\frac{2}{x^{2}}\right)^{80}$?

Question 2:

a) (4pts)Let n be a positive integer, prove the identity

$$
\binom{2 n}{n+1}+\binom{2 n}{n}=\frac{1}{2}\binom{2 n+2}{n+1}
$$

b) (4pts) Suppose that a department contains 16 men and 12 women. How many ways are there to form a committee with eight members if it must have more men than women?

Question 3:

a) (4pts) Use generating functions to solve the recurrence relation $a_{n}=3 a_{n-1}+2^{n-1}$ with $a_{0}=1$.
b) (4pts) Solve the homogeneous recurrence relation: $a_{n}=7 a_{n-1}-12 a_{n-2}$ together with initial conditions $a_{0}=0, a_{1}=2$.

Question 4:
Given the following graph G

a) (2pts) Find the adjacency matrix for G.
b) (2pts) What is $\chi(G)$?
c) (2pts) Has G Euler circuit? Justify your answer.
d) (2pts) Determine whether G has a Hamilton circuit. If it does, find such a circuit. If it does not, give an argument to show why no such circuit exists.

Question 5:

a) (2pts)Determine whether the graphs G and H displayed in the following figure are isomorphic

H
b) (2pts) For which values of m and n the complete bipartite graph $K_{m, n}$ is Eulerian?
c) (4pts) Find the shortest path and its length between \mathbf{a} and \mathbf{z} in the given weighted graph.

$G(x)$	a_{k}
$\begin{aligned} (1+x)^{n} & =\sum_{k=0}^{n} C(n, k) x^{k} \\ & =1+C(n, 1) x+C(n, 2) x^{2}+\cdots+x^{n} \end{aligned}$	$C(n, k)$
$\begin{aligned} (1+a x)^{n} & =\sum_{k=0}^{n} C(n, k) a^{k} x^{k} \\ & =1+C(n, 1) a x+C(n, 2) a^{2} x^{2}+\cdots+a^{n} x^{n} \end{aligned}$	$C(n, k) a^{k}$
$\begin{aligned} \left(1+x^{r}\right)^{n} & =\sum_{k=0}^{n} C(n, k) x^{n k} \\ & =1+C(n, 1) x^{r}+C(n, 2) x^{2 r}+\cdots+x^{r z} \end{aligned}$	$C(n, k / r)$ if $r \mid k ; 0$ otherwise
$\frac{1-x^{n+1}}{1-x}=\sum_{k=0}^{n} x^{k}=1+x+x^{2}+\cdots+x^{n}$	1 if $k \leq \pi ; 0$ otherwise
$\frac{1}{1-x}=\sum_{k=0}^{\infty} x^{k}=1+x+x^{2}+\cdots$	1
$\frac{1}{1-a x}=\sum_{k=0}^{\infty} a^{k} x^{k}=1+a x+a^{2} x^{2}+\cdots$	a^{k}
$\frac{1}{1-x^{\prime}}=\sum_{k=0}^{\infty} x^{\prime k}=1+x^{\prime}+x^{2 r}+\cdots$	1 if $r \mid k ; 0$ otherwise
$\frac{1}{(1-x)^{2}}=\sum_{k=0}^{\infty}(k+1) x^{k}=1+2 x+3 x^{2}+\cdots$	$k+1$
$\begin{aligned} \frac{1}{(1-x)^{n}} & =\sum_{k=0}^{\infty} C(n+k-1, k) x^{k} \\ & =1+C(n, 1) x+C(n+1,2) x^{2}+\cdots \end{aligned}$	$C(n+k-1, k)=C(n+k-1, n-1)$
$\begin{aligned} \frac{1}{(1+x)^{v}} & =\sum_{k=0}^{\infty} C(n+k-1, k)(-1)^{k} x^{k} \\ & =1-C(n, 1) x+C(n+1,2) x^{2}-\cdots \end{aligned}$	$(-1)^{k} C(n+k-1, k)=(-1)^{k} C(n+k-1, n-1)$
$\begin{aligned} \frac{1}{(1-a x)^{k}} & =\sum_{k=0}^{\infty} C(n+k-1, k) a^{k} x^{k} \\ & =1+C(n, 1) a x+C(n+1,2) a^{2} x^{2}+\cdots \end{aligned}$	$C(n+k-1, k) a^{k}=C(n+k-1, n-1) a^{k}$
$e^{k}=\sum_{k=0}^{\infty} \frac{x^{k}}{k!}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots$	$1 / k$!
$\ln (1+x)=\sum_{k=0}^{\infty} \frac{(-1)^{k+1}}{k} x^{k}=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\cdots$	$(-1)^{k+1} / k$

