Ministry of Education Al-Imam Mohammad Ibn Saud Islamic University College of Science Department of Mathematics and Statistics

Course Name: Combin. and Graphs Course Code: MAT 354 Semester/Year: Second/1437-1438H Date/Time: 26-08-1438H / 8:00 am Duration: 2 Hours

Instructions: Only ordinary calculators are allowed.

Final Exam 22\05\2017

Name	ID	section

Q1	8
Q2	8
Q3	8
Q4	8
Q5	8
Total	40

Question 1:

a) (3pts)How many positive integers from 1000 and 5000 are not divisible by both 9 and 11?

b) (2pts) What is the minimum number of students in a school to be sure that at least six were born in the same month?

c) (3pts) What is the coefficient of
$$x^{20}$$
 in the expansion of $(x^2 + \frac{2}{x^2})^{80}$?

Question 2 :

a) (4pts)Let n be a positive integer, prove the identity

$$\binom{2n}{n+1} + \binom{2n}{n} = \frac{1}{2} \binom{2n+2}{n+1},$$

b) (4pts) Suppose that a department contains 16 men and 12 women. How many ways are there to form a committee with eight members if it must have more men than women?

Question 3:

a) (4pts) Use generating functions to solve the recurrence relation $a_n = 3a_{n-1} + 2^{n-1}$ with $a_0 = 1$.

b) (4pts) Solve the homogeneous recurrence relation: $a_n = 7a_{n-1} - 12a_{n-2}$ together with initial conditions $a_0 = 0, a_1 = 2$.

Question 4:

Given the following graph $\,G\,$

a) (2pts) Find the adjacency matrix for G.

- b) (2pts) What is $\chi(G)$?
- c) (2pts) Has G Euler circuit? Justify your answer.

d) (2pts) Determine whether G has a Hamilton circuit. If it does, find such a circuit. If it does not, give an argument to show why no such circuit exists.

Question 5:

a) (2pts)Determine whether the graphs G and H displayed in the following figure are isomorphic

b) (2pts) For which values of m and n the complete bipartite graph $K_{m,n}$ is Eulerian?

c) (4pts) Find the shortest path and its length between \mathbf{a} and \mathbf{z} in the given weighted graph.

TABLE 1 Useful Generating Functions.		
<i>G</i> (<i>x</i>)	ak	
$(1+x)^n = \sum_{k=0}^n C(n,k) x^k$ = 1 + C(n, 1)x + C(n, 2)x^2 + \dots + x^n	С(п, k)	
$(1 + ax)^n = \sum_{k=0}^n C(n, k) a^k x^k$ = 1 + C(n, 1)ax + C(n, 2)a^2 x^2 + \dots + a^n x^n	$C(n,k)a^k$	
$(1 + x^{r})^{n} = \sum_{k=0}^{n} C(n, k) x^{rk}$ = 1 + C(n, 1)x^{r} + C(n, 2)x^{2r} + \dots + x^{rn}	$C(n, k/r)$ if $r \mid k$; 0 otherwise	
$\frac{1-x^{n+1}}{1-x} = \sum_{k=0}^{n} x^k = 1 + x + x^2 + \dots + x^n$	1 if $k \leq n$; 0 otherwise	
$\frac{1}{1-x} = \sum_{k=0}^{\infty} x^k = 1 + x + x^2 + \cdots$	1	
$\frac{1}{1-ax} = \sum_{k=0}^{\infty} a^k x^k = 1 + ax + a^2 x^2 + \cdots$	a ^k	
$\frac{1}{1-x'} = \sum_{k=0}^{\infty} x'^k = 1 + x' + x^{2r} + \cdots$	1 if $r \mid k$; 0 otherwise	
$\frac{1}{(1-x)^2} = \sum_{k=0}^{\infty} (k+1)x^k = 1 + 2x + 3x^2 + \cdots$	<i>k</i> + 1	
$\frac{1}{(1-x)^n} = \sum_{k=0}^{\infty} C(n+k-1,k)x^k$ $= 1 + C(n,1)x + C(n+1,2)x^2 + \cdots$	C(n + k - 1, k) = C(n + k - 1, n - 1)	
$\frac{1}{(1+x)^n} = \sum_{k=0}^{\infty} C(n+k-1,k)(-1)^k x^k$ $= 1 - C(n,1)x + C(n+1,2)x^2 - \cdots$	$(-1)^{k}C(n+k-1,k) = (-1)^{k}C(n+k-1,n-1)$	
$\frac{1}{(1-ax)^n} = \sum_{k=0}^{\infty} C(n+k-1,k)a^k x^k$ = 1 + C(n, 1)ax + C(n + 1, 2)a^2x^2 +	$C(n + k - 1, k)a^{k} = C(n + k - 1, n - 1)a^{k}$	
$e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$	1/k!	
$\ln(1+x) = \sum_{k=0}^{\infty} \frac{(-1)^{k+1}}{k} x^k = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \cdots$	$(-1)^{k+1}/k$	