Ministry of Education
Al-Imam Mohammed Ibn Saud Islamic University College of Science
Department of Mathematics and Statistics

Final
Examination

Course Name: Graph Theory and Combinatorics

Course Code: Mat 651
Semester/Year: Second/1436-1437
Date/Time: 01-08-1437 H/ 9:00 am
Duration: 3 Hours

Instructions: Ordinary calculators are allowed.

Answer Two parts from each of the following questions:

Question $1[4+4=8$ marks]

(a)How many ways are there to distribute five different books among four children if every child take at least one book?
(b)How many bit string of length 10 that contains:
(i) at least three ones?
(ii) at most three ones?
(c)Use the generating functions to solve the recurrence relation

$$
a_{n}=5 a_{n-1}-4 a_{n-2}, \quad n \geq 2, \text { subject to } a_{0}=1, a_{1}=2
$$

Question $2[4+4=8$ marks]

(a)Use the exponential generating function to solve the recurrence relation $a_{n}=n a_{n-1}+-1^{n}, \quad n \geq 1$ with initial condition $a_{0}=1$.
(b) How many different 10-bead necklaces are there using beads of red, white, and blue incase of rotations being considered equal.
(c) Let G be a simple connected graph with at least 11 vertices. Prove that either G or \bar{G} is non planar.

Question 3 [4+4=8 marks]

(a) Show that $\sum_{k=m}^{n}\binom{k}{r}=\binom{n+1}{r+1}-\binom{m}{r+1}$.
(b)Find the chromatic polynomial for the graph $K_{n}-e$ (The graph obtained from the graph K_{n} by removing an edge).
(c)Show that a simple graph G of order n is connected if $\operatorname{deg}(v) \geq \frac{(n-1)}{2}$ for every v of G. Is this true in case $\operatorname{deg}(v) \geq \frac{(n-2)}{2}$ for every v of G ?

Question 4 [4+4=8 marks]

(a)Show that every simple planar graph has a vertex of degree at most five and then prove that every simple planar graph is 6 -colorable.
(b)Find the adjacency spectrum and the Laplacian spectrum of the complete graph K_{4}.
(c) Prove that every cubic Hamiltonian graph is 3-edge-colorable.

Question 5 [$4+4=8$ marks]

(a) For the generating function: $\frac{1+x^{3}}{(1+x)^{3}}$, provide a closed formula for the sequence it
determines.

Ministry of Education
Al-Imam Mohammed Ibn Saud Islamic University College of Science

Department of Mathematics and Statistics

Final
Examination

Course Name: Graph Theory and
Combinatorics
Course Code: Mat 651
Semester/Year: Second/1436-1437
Date/Time: 01-08-1437 H/ 9:00 am
Duration: 3 Hours

Instructions: Ordinary calculators are allowed.

Let G and H be the following two graphs:

G

Justify your answer for the following:
(a) (i) Is G isomorphic to \bar{H} ?
(ii) Is G Hamitonian?
(b) (i) Find $\chi(H)$ and $\chi_{e}(G)$.
(ii) Is \bar{G} Eulerian?
(iii) Is H planar?
(End Questions $8 \mathcal{G}$ Good Luck)

