

Kingdom of Saudi Arabia
Ministry of Higher Education
Al-Imam Mohammed Bin
Saud Islamic University

College: \quad Science
Department: Mathematics \& Statistics

الـَملَكَة العَرَبِية السَعُودِية

جَامِعَة الإِمَام عُمَّمَ بن الِّا
سَعُود الإِسَاْمِية
Duration: 75 Minutes
Course Code: MATH 227
Semester/Year: First / 1434-35

Final Examination

Q 1. [8 Marks]
Solve the following system of linear equations using Gauss-Jordan Elimination Method

$$
\begin{array}{rlrl}
x_{1}-2 x_{2}-6 x_{3} & =7 \\
2 x_{1}-6 x_{2}-16 x_{3} & = & -46 \\
x_{1}-2 x_{2}-1 x_{3} & = & -5
\end{array}
$$

Q 2. $[\mathbf{2 + 2 + 2 + 2}$ Marks $]$
Determine whether the following statements are True or False. Justify your answer
(a) If P, Q, R are matrices and $\boldsymbol{\operatorname { S i z e }}(P)=3 \times 1, \operatorname{Size}(Q)=2 \times 1, \boldsymbol{\operatorname { S i z e }}(R)=1 \times 3$. Then, $\operatorname{Size}(3 P Q+4 R P Q)=3 \times 2$.
(b) If A, B are square matrices of same size. Then $(A-B)(A+B)-\left(A^{2}-B^{2}\right)=O$.
(c) If A is a square matrix and c is a scalar. Then $(c A)^{-1}=c A^{-1}$.
(d) If A is a square matrix and c is a scalar. Then $(c A)^{t}=\frac{1}{c} A^{t}$.

Q 3. [8 Marks]
Show that the following system of linear equations has unique solution. Find this solution by using Cramer's rule

$$
\begin{array}{r}
x_{1}+3 x_{2}+x_{3}=-2 \\
2 x_{1}+5 x_{2}+x_{3}=-5 \\
x_{1}+2 x_{2}+3 x_{3}=6
\end{array}
$$

Q 4. $[\mathbf{2}+\mathbf{3}+\mathbf{3}$ Marks $]$
(a) Determine whether or not the vectors $\underline{u}=(1,-1,2,-5,9)$ and $\underline{v}=(4,7,4,1,0)$ are orthogonal?
(b) Show that the set $W=\left\{\left[\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right]: a, b \in R\right\}$ of all 2×2 diagonal matrices is a subspace of the vector space M_{22} of all 2×2 matrices of real numbers.
(c) Find whether or not the set $B=\{(0,0,1),(2,3,1),(4,1,2)\}$ is a basis of the vector space R^{3} ?

Q 5. [2+3+3 Marks]
Solve the following differential equations:
(a) $(x+1) \frac{d y}{d x}-y=0, y(0)=1, \quad$ Use Separation of variables.
(b) $4 y^{\prime \prime}+9 y=15$,

Non-homogeneous equation.
(c) $y^{\prime \prime}+y^{\prime}-6 y=2 x$,

Non-homogeneous equation.

GOOD LUCK

