Kingdom of Saudi Arabia
Ministry of higher Education
Al-Imam Mohammad Ibn Saud Islamic University
--- College of Science ---

Department: Mathematics \& Statistics

المملكة العربية السعودية
وزارة التعليم العالي
جامعة الإمام محمد بن سعود الإسلامية
كلية اللعوم
قسم الرياضيّات و الإحصاء

Course: Elements of sets and structures

Semester/Year: First /1435-1436H

Duration: 2 Hours

Final Examination

QUESTION $1[10=4+3+3$ marks $]$

Let P, Q and R be three statements.
1- Prove the following logical equivalence: $(\neg P \Rightarrow(Q \Rightarrow R)) \equiv(Q \Rightarrow(P \vee R))$.
2- Show that the following statement is a tautology (without using the truth table):

$$
((P \vee Q) \wedge \neg P) \Rightarrow Q
$$

3- Let $A=\{1,3,4,8\}, B=\{2,6,9\}$ and $C=\{1,2,4,5\}$ be subsets of the universal set
$U=\{1,2,3, \ldots, 10\}$. Determine:
(a) $(A \cap C)^{\prime}$
(b) $(A \cup B)^{\prime}$
(c) $A-C$.

QUESTION $2[9=3+3+3$ marks]

1- Prove, by the principle of mathematical induction, that:
$\frac{1}{1 \times 2}+\frac{1}{2 \times 3}+\frac{1}{3 \times 4}+\cdots+\frac{1}{n \times(n+1)}=\frac{n}{n+1}, \quad \forall n \geq 1$.
2- Let m be an integer. Prove that $7 m-4$ is odd if and only if $5 m+3$ is an even integer.
3- Let A, B and C be subsets of the universal set U. Prove that: $(A \cup B)-C=(A-C) \cup(B-C)$.

QUESTION 3 [$11=3+8$ marks]

1- Let A, B and C be subsets of the universal set U. Prove that : $A \times(B \cup C)=(A \times B) \cup(A \times C)$
2- Let R and S be two relations defined on the set $A=\{1,2,4\}$ as follows: $R=\{(x, y) \mid x y$ is even $\}$
and $S=\{(x, y) \mid x$ is a factor of $y\}$. Determine: \quad (a) R and $S \quad$ (b) $\operatorname{Dom}(R)$ and $\operatorname{Rng}(S)$
$\begin{array}{lll}\text { (c) } S \circ R & \text { (d) } R^{-1} \circ S^{-1} & \text { (e) Which of } R \text { or } S \text { is antisymmetric? }\end{array}$

1- Prove that $R=\{(x, y) \mid x+y$ is an even int eger $\}$ is an equivalence relation on \mathbb{Z} and find the distinct equivalence classes.

2- Let $f: \mathbb{R}-\{1\} \rightarrow \mathbb{R}-\{2\}$ be a function defined as $f(x)=\frac{2 x-1}{x-1}$. Prove that f is a one-toone correspondence and find its inverse.

3- Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be one-to-one functions. Prove that $g \circ f$ is also one-to-one function.
-Good Luck-

