Kingdom of Saudi Arabia Ministry of higher Education Al-Imam Mohammad Ibn Saud Islamic University --- College of Science ---

Department: Mathematics & Statistics Semester/Year: First /1435-1436H

Duration: 2 Hours

المملكة العربية السعودية وزارة التعليم العالي جامعة الإمام محمد بن سعود الإسلامية كلية العلوم قسم الرياضيات و الإحصاء

Course:

: Elements of sets and structures

Course Code: MAT 220

Final Examination

QUESTION 1 [10=4+3+3 marks]

Let P, Q and R be three statements.

1- Prove the following logical equivalence: $(\neg P \Rightarrow (Q \Rightarrow R)) \equiv (Q \Rightarrow (P \lor R)).$

2- Show that the following statement is a tautology (without using the truth table):

 $((P \lor Q) \land \neg P) \Rightarrow Q.$

3- Let $A = \{1, 3, 4, 8\}$, $B = \{2, 6, 9\}$ and $C = \{1, 2, 4, 5\}$ be subsets of the universal set $U = \{1, 2, 3, ..., 10\}$. Determine: (a) $(A \cap C)'$ (b) $(A \cup B)'$ (c) A - C.

QUESTION 2 [9=3+3+3 marks]

1- Prove, by the principle of mathematical induction, that:

 $\frac{1}{1\times 2} + \frac{1}{2\times 3} + \frac{1}{3\times 4} + \dots + \frac{1}{n\times (n+1)} = \frac{n}{n+1}, \quad \forall n \ge 1.$

2- Let m be an integer. Prove that 7m - 4 is odd if and only if 5m + 3 is an even integer.

3- Let A, B and C be subsets of the universal set U. Prove that: $(A \cup B) - C = (A - C) \cup (B - C)$.

QUESTION 3 [11=3+8 marks]

1- Let A, B and C be subsets of the universal set U. Prove that $:A \times (B \cup C) = (A \times B) \cup (A \times C)$

2- Let R and S be two relations defined on the set $A = \{1, 2, 4\}$ as follows: $R = \{(x, y) | xy \text{ is even}\}$ and $S = \{(x, y) | x \text{ is a factor of } y\}$. Determine: (a) R and S (b) Dom(R) and Rng(S)(c) $S \circ R$ (d) $R^{-1} \circ S^{-1}$ (e) Which of R or S is antisymmetric?

<u>QUESTION 4</u> [10=4+4+2 marks]:

- 1- Prove that $R = \{(x, y) | x + y \text{ is an even int eger} \}$ is an equivalence relation on \mathbb{Z} and find the distinct equivalence classes.
- 2- Let $f : \mathbb{R} \{1\} \to \mathbb{R} \{2\}$ be a function defined as $f(x) = \frac{2x-1}{x-1}$. Prove that f is a one-to-one correspondence and find its inverse.
- 3- Let $f: A \to B$ and $g: B \to C$ be one-to-one functions. Prove that $g \circ f$ is also one-to-one function.

-Good Luck-