Kingdom of Saudi Arabia Ministry of Education Al-Imam Mohammad Ibn Saud Islamic University --- College of Science ---

Department: Mathematics & Statistics Semester/Year: First /1436-1437

Duration: 2 Hs

المملكة العربية السعودية وزارة التعليم جامعة الإمام محمد بن سعود الإسلامية كلية العلوم قسم الرياضيات و الإحصاء

Course Name: Elements of sets and structures Course Code: MAT 220

Final Examination

Answer Four questions only of the following:

QUESTION 1 [10=4+4+2 marks]

1. Let P, Q and R be statements. Use the stated laws and rules to prove that

$$((P \land Q) \Rightarrow R) \equiv (P \Rightarrow (Q \Rightarrow R))$$

2. Prove, by the principle of mathematical induction, that:

$$1^{2} + 3^{2} + 5^{2} + \dots + (2n-1)^{2} = \frac{n(2n-1)(2n+1)}{3}, \quad \forall n \ge 1$$

3. Write the converse, inverse, contrapositive and the negation of the following conditional statement: "The number $\sqrt{2}$ is irrational, if the number log 2 is rational ".

QUESTION 2 [10=4+4+2 marks]

1. Let the universe set be the set $U = \{1, 2, 3, \dots, 12\}$, $A = \{x \in U | x \le 8\}$, $B = \{1, 5, 10\}$ and $C = \{x \in U | x \text{ is even}\}$. Determine: (a) $A' \cap C$ (b) A - B (c) $|A \times B|$ (d) P(B), the power set of the set B.

2. Let m and n be integers. Prove that if m is an even integer and n is an odd integer,

then $\frac{m(n^2-1)}{8}$ is an even integer.

3. Find the truth set of $\{x \in \mathbb{N} | 2x + 5 \ge 3x\}$.

QUESTION 3 [10=3+(3+1+1)+2 marks]

1. Let A and B be subsets of the universal set U. Prove the following statement using the stated laws and rules: $(A \cup B) - C = (A - C) \cup (B - C)$.

"Please, turn over the page"

2. Let R and S be two relations defined on the set $A = \{a, b, c, d\}$ as follows $R = \{(a, a), (b, b), (c, c), (d, d), (a, d), (d, a)\}, S = \{(a, a), (b, b), (c, d), (d, c), (c, c), (d, d)\}.$ Determine: (a) $S \circ R$. (b) Is $S \circ R$ an equivalence relation? (c) Is $R \cup S$ an equivalence relation? (Justify your answer).

3. Let R be a relation on a set A. Prove that $R = R^{-1}$ if and only if R is symmetric.

<u>QUESTION 4</u> [10=5+5 marks]

1. Prove that $R = \{(x, y) \in \mathbb{Q} \times \mathbb{Q} | x - y \text{ is an integer} \}$ is an equivalence relation on \mathbb{Q} and find the equivalence class $[0]_R$.

2. Prove that the function $f : \mathbb{R} - \{1\} \to \mathbb{R} - \{2\}$ defined by $f(x) = \frac{2x}{x-1}$ is a one-to-one correspondence and find f^{-1} .

<u>QUESTION 5</u> [10=5×2 marks]

Prove or disprove \underline{Five} of the following statements:

- 1- The statement $P \Rightarrow (P \lor Q)$ is a tautology.
- 2. Every relation is a function.

3. The integer 50 can be written as the sum of one odd integer and two even integers.

- 4. The function $f:[0,\infty) \to [1,\infty)$ defined by $f(x) = x^2 + 1$ is onto.
- 5. $R = \{(x, y) \in \mathbb{Z} \times \mathbb{Z} | x^2 + y^2 \text{ is an even integer} \}$ is an equivalence relation on \mathbb{Z} .

Let A and B be subsets of a universal set U:

6.
$$P(A \cup B) = P(A) \cup P(B)$$
.

7. If $A \times B = B \times A$, then A = B.

************Best wishes*******