Kingdom of Saudi Arabia
Ministry of Education
Al-Imam Mohammad Ibn Saud
Islamic University
--- College of Science ---

Department: Mathematics \& Statistics
Semester/Year: First /1436-1437
Duration: 2 Hs

المملكة العربية السعودية
وزارة التعليم
جامعة الإمام محمد بن سعود الإسلامية
كلية اللعوم
قسم الرياضيات و الإحصاء

Course Name: Elements of sets and structures Course Code: MAT 220

Final Examination

Answer Four questions only of the following:

QUESTION $1[10=4+4+2$ marks]

1. Let P, Q and R be statements. Use the stated laws and rules to prove that

$$
((P \wedge Q) \Rightarrow R) \equiv(P \Rightarrow(Q \Rightarrow R))
$$

2. Prove, by the principle of mathematical induction, that:
$1^{2}+3^{2}+5^{2}+\cdots+(2 n-1)^{2}=\frac{n(2 n-1)(2 n+1)}{3}, \quad \forall n \geq 1$.
3. Write the converse, inverse, contrapositive and the negation of the following conditional statement:
" The number $\sqrt{2}$ is irrational, if the number $\log 2$ is rational ".

QUESTION $2[10=4+4+2$ marks $]$

1. Let the universe set be the set $U=\{1,2,3, \cdots, 12\}, A=\{x \in U \mid x \leq 8\}, B=\{1,5,10\}$ and
$C=\{x \in U \mid x$ is even $\}$. Determine:
(a) $A^{\prime} \cap C$
(b) $A-B$
(c) $|A \times B|$
(d) $P(B)$, the power set of the set B.
2. Let m and n be integers. Prove that if m is an even integer and n is an odd integer,
then $\frac{m\left(n^{2}-1\right)}{8}$ is an even integer.
3. Find the truth set of $\{x \in \mathbb{N} \mid 2 x+5 \geq 3 x\}$.

QUESTION 3 [$10=3+(3+1+1)+2$ marks]

1. Let A and B be subsets of the universal set U. Prove the following statement using the stated laws and rules: $(A \cup B)-C=(A-C) \cup(B-C)$.
"Please, turn over the page"
2. Let R and S be two relations defined on the set $A=\{a, b, c, d\}$ as follows
$R=\{(a, a),(b, b),(c, c),(d, d),(a, d),(d, a)\}, S=\{(a, a),(b, b),(c, d),(d, c),(c, c),(d, d)\}$.
Determine: (a) $S \circ R$. (b) Is $S \circ R$ an equivalence relation? \quad (c) Is $R \cup S$ an equivalence relation? (Justify your answer).
3. Let R be a relation on a set A. Prove that $R=R^{-1}$ if and only if R is symmetric.

QUESTION 4 [$10=5+5$ marks]

1. Prove that $R=\{(x, y) \in \mathbb{Q} \times \mathbb{Q} \mid x-y$ is an integer $\}$ is an equivalence relation on \mathbb{Q} and find the equivalence class $[0]_{R}$.
2. Prove that the function $f: \mathbb{R}-\{1\} \rightarrow \mathbb{R}-\{2\}$ defined by $f(x)=\frac{2 x}{x-1}$ is a one-to-one correspondence and find f^{-1}.

QUESTION $5[10=5 \times 2$ marks]

Prove or disprove $\underline{\text { Five }}$ of the following statements:

1- The statement $P \Rightarrow(P \vee Q)$ is a tautology.
2. Every relation is a function.
3. The integer 50 can be written as the sum of one odd integer and two even integers.
4. The function $f:[0, \infty) \rightarrow[1, \infty)$ defined by $f(x)=x^{2}+1$ is onto.
5. $R=\left\{(x, y) \in \mathbb{Z} \times \mathbb{Z} \mid x^{2}+y^{2}\right.$ is an even integer $\}$ is an equivalence relation on \mathbb{Z}.

Let A and B be subsets of a universal set U :
6. $P(A \cup B)=P(A) \cup P(B)$.
7. If $A \times B=B \times A$, then $A=B$.

