## Kingdom of Saudi Arabia Ministry of Education Al-Imam Mohammed Ibn Saud Islamic University College of Science

Section:



Semester 2 - 1438/1437

Student Name \_

التملكة العَرَبِية السَعُودِية وزَارَة التَّعلِيم جَامِعة الإِمَام مُحَمَّد بن سَعُود الإِسلامِية -كَلِيـــة العُـــــلوم-

| Sun. 18/08/1438    | Final Exam |
|--------------------|------------|
| Duration: 2H 30Min |            |

CALCULUS II MAT 106

| Answers written outside the alloca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ted space w             | ill NO            | T be g | raded. | ,      |       | Calculators are not allowed.                                                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-------------------|--------|--------|--------|-------|------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Question:               | 1                 | 2      | 3      | 4      | Total |                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Points:                 | 15                | 7      | 6      | 12     | 40    |                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Score:                  |                   |        |        |        |       |                                                                                    |
| <ul> <li>1. 15 points</li> <li>(a) 3 points Let R be the y-axis, and the Find the volume of the the region R about the region the region R about R a</li></ul> | y = 2, as the solid re- | s shov<br>esultin | wn in  | the    | figure | Э.    | $ \begin{array}{c} y \\ x = 4 \\ 2 \overline{)} \\ y = \sqrt{x} \\ 4 \end{array} $ |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                         | · · · · · ·       |        |        |        |       |                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                         |                   |        |        |        |       |                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                         |                   |        |        |        |       |                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                         | · · · · · ·       |        |        |        |       |                                                                                    |

|                                   | Evaluate the following integrals: |
|-----------------------------------|-----------------------------------|
| i. $\int x s$                     | $\operatorname{ec}^2 x  dx$ .     |
| J                                 |                                   |
|                                   |                                   |
|                                   |                                   |
|                                   |                                   |
|                                   |                                   |
|                                   |                                   |
|                                   |                                   |
|                                   |                                   |
|                                   |                                   |
|                                   |                                   |
|                                   |                                   |
|                                   |                                   |
|                                   |                                   |
|                                   |                                   |
|                                   |                                   |
|                                   |                                   |
|                                   |                                   |
|                                   |                                   |
| ii. $\int \frac{1}{\sqrt{1+x^2}}$ | $\frac{x^3}{x^2+9} \ dx.$         |
|                                   |                                   |
|                                   |                                   |
|                                   |                                   |
|                                   |                                   |
|                                   |                                   |
|                                   |                                   |
|                                   |                                   |
|                                   |                                   |
|                                   |                                   |
|                                   |                                   |
|                                   |                                   |
|                                   |                                   |
|                                   |                                   |
|                                   |                                   |
|                                   |                                   |
|                                   |                                   |
|                                   |                                   |

| ii. | $\int_{0}^{2} \frac{e^x}{\sqrt{e^x - 1}}  dx.$         |
|-----|--------------------------------------------------------|
|     |                                                        |
|     |                                                        |
|     |                                                        |
|     |                                                        |
|     |                                                        |
|     |                                                        |
|     |                                                        |
|     |                                                        |
|     |                                                        |
|     |                                                        |
|     |                                                        |
|     |                                                        |
|     |                                                        |
|     |                                                        |
|     |                                                        |
| iv. | $\int_0^1 \int_0^{\sqrt{x}} 2 \sqrt{x} e^{x^2} dy dx.$ |
|     |                                                        |
|     |                                                        |
|     |                                                        |
|     |                                                        |
|     |                                                        |
|     |                                                        |
|     |                                                        |
|     |                                                        |
|     |                                                        |
|     |                                                        |
|     |                                                        |
|     |                                                        |
|     |                                                        |
|     |                                                        |
|     |                                                        |
|     |                                                        |

| 2. | 7 | points |
|----|---|--------|

(a) 4 points Determine whether the following series converges or diverges:

i.  $\sum_{k=2}^{\infty} \frac{(-3k)^k (k+1)^k}{k^{2k}}$ .

| <br>• | <br>• | <br>• | • | <br>• | <br>• | • | • | • | • | • | <br>• | • | • | • | • | • | <br>• | • | • | • | • | • | • | • | • | <br>• | • | <br>• | • | <br>• | • | • | <br>• | • | • | <br>• | • | <br>•          |  |
|-------|-------|-------|---|-------|-------|---|---|-------|---|---|-------|---|---|-------|---|---|---|---|---|-------|---|---|---|---|---|-------|---|---|---|---|---|---|---|---|-------|---|-------|---|-------|---|---|-------|---|---|-------|---|----------------|--|
|       |       |       |   |       |       |   |   |       |   |   |       |   |   |       |   |   |   |   |   |       |   |   |   |   |   | <br>• |   |   |   |   |   |   |   |   |       |   |       |   |       |   |   |       |   |   |       |   | <br>. <b>.</b> |  |
|       |       |       |   |       |       |   |   |       |   |   |       |   |   |       |   |   |   |   |   |       |   |   |   |   |   |       |   |   |   |   |   |   |   |   |       |   |       |   | <br>  |   |   |       |   |   |       |   | <br>           |  |
|       |       |       |   |       | <br>  |   |   |       |   |   |       |   |   |       |   |   |   |   |   |       |   |   |   |   |   |       |   |   |   |   |   |   |   |   |       |   |       |   | <br>  |   |   |       |   |   |       |   | <br>           |  |
|       |       |       |   |       | <br>  |   |   |       |   |   |       | _ |   |       |   | _ |   |   |   | <br>  |   |   | _ |   |   | <br>  |   |   |   |   |   |   |   |   |       |   |       |   | <br>  |   |   |       |   | _ |       |   | <br>           |  |
| •     |       |       |   |       |       |   |   |       |   |   |       |   |   |       |   |   |   |   |   |       |   |   |   |   |   |       |   |   |   |   |   |   |   |   |       |   |       |   |       |   |   |       |   |   |       |   |                |  |
|       |       |       |   |       |       |   |   |       |   |   |       |   |   |       |   |   |   |   |   |       |   |   |   |   |   |       |   |   |   |   |   |   |   |   |       |   |       |   |       |   |   |       |   |   |       |   |                |  |
| <br>• | <br>• | <br>• | • | <br>• | <br>• | • | • | • | • | • | <br>• | • | • | • | • | • | <br>• | • | • | • | • |   | • | • | • | <br>• | • | <br>• | • | <br>• | • | • | <br>• | • | • | <br>• | • | <br>•          |  |

.....

ii. 
$$\sum_{k=1}^{\infty} \frac{k^{-2}}{2 + \sin^2 k}.$$

.....

| series:                                          | $\sum_{k=0}^{\infty} (x-4)^k$                                         |
|--------------------------------------------------|-----------------------------------------------------------------------|
|                                                  | $\sum_{k=1}^{\infty} \frac{(x-4)^k}{\sqrt[3]{k}}$                     |
|                                                  |                                                                       |
| • • • • • • • • •                                |                                                                       |
|                                                  |                                                                       |
|                                                  |                                                                       |
|                                                  |                                                                       |
|                                                  |                                                                       |
|                                                  |                                                                       |
|                                                  |                                                                       |
|                                                  |                                                                       |
|                                                  |                                                                       |
|                                                  |                                                                       |
|                                                  |                                                                       |
|                                                  |                                                                       |
|                                                  |                                                                       |
|                                                  |                                                                       |
|                                                  |                                                                       |
| 6 points (a) 2 points $(-1, \sqrt{3})$           | Find all polar coordinate representation for the rectangular coordin. |
|                                                  |                                                                       |
| (a) 2 points                                     |                                                                       |
| (a) 2 points                                     |                                                                       |
| (a) 2 points                                     |                                                                       |
| (a) $2 \text{ points}$ $(-1, \sqrt{3})$ $\cdots$ |                                                                       |
| (a) $2 \text{ points}$ $(-1, \sqrt{3})$          |                                                                       |
| (a) $2 \text{ points}$ $(-1, \sqrt{3})$          |                                                                       |
| (a) $2 \text{ points}$ $(-1, \sqrt{3})$          |                                                                       |
| (a) $2 \text{ points}$ $(-1, \sqrt{3})$          |                                                                       |
| (a) $2 \text{ points}$ $(-1, \sqrt{3})$          |                                                                       |
| (a) $2 \text{ points}$ $(-1, \sqrt{3})$          |                                                                       |
| (a) $2 \text{ points}$ $(-1, \sqrt{3})$          |                                                                       |
| (a) $2 \text{ points}$ $(-1, \sqrt{3})$          |                                                                       |
| (a) $2 \text{ points}$ $(-1, \sqrt{3})$          |                                                                       |

| (b) 2 points Find the slope of the tangent line to the polar curve $r = 3 \sin \theta$ at $\theta = -\frac{1}{2} \sin \theta$ | $\frac{\pi}{4}$ . |
|-------------------------------------------------------------------------------------------------------------------------------|-------------------|
|                                                                                                                               |                   |
|                                                                                                                               | • • •             |
| •••••••••••••••••••••••••••••••                                                                                               | • • •             |
|                                                                                                                               | • • •             |
|                                                                                                                               | • • •             |
|                                                                                                                               | • • •             |
|                                                                                                                               | • • •             |
|                                                                                                                               | • • •             |
|                                                                                                                               | • • •             |
|                                                                                                                               | • • •             |
|                                                                                                                               | •••               |
|                                                                                                                               |                   |
|                                                                                                                               |                   |
|                                                                                                                               |                   |
|                                                                                                                               |                   |
|                                                                                                                               |                   |
| (c) 2 points Show that the rectangular equation $x^2 - 3x + y^2 = 0$ is corresponding                                         | g to              |
| (c) 2 points Show that the rectangular equation $x^2 - 3x + y^2 = 0$ is corresponding the polar equation $r = 3\cos\theta$ .  | g to              |
|                                                                                                                               | g to              |
|                                                                                                                               | g to              |
|                                                                                                                               |                   |
|                                                                                                                               | <br>              |
| the polar equation $r = 3\cos\theta$ .                                                                                        | <br>              |
| the polar equation $r = 3\cos\theta$ .                                                                                        | <br>              |
| the polar equation $r = 3\cos\theta$ .                                                                                        | <br><br>          |
| the polar equation $r = 3\cos\theta$ .                                                                                        | <br><br>          |
| the polar equation $r = 3\cos\theta$ .                                                                                        | <br><br>          |
| the polar equation $r = 3\cos\theta$ .                                                                                        | <br><br>          |
| the polar equation $r = 3\cos\theta$ .                                                                                        | <br><br>          |
| the polar equation $r = 3\cos\theta$ .                                                                                        | <br><br>          |
| the polar equation $r = 3\cos\theta$ .                                                                                        |                   |
| the polar equation $r = 3\cos\theta$ .                                                                                        | g to              |
| the polar equation $r = 3\cos\theta$ .                                                                                        |                   |

| 4. | 12 points                                                                              |
|----|----------------------------------------------------------------------------------------|
|    | (a) show that $\lim_{(x,y)\to(0,0)} \frac{x^2y}{3\cdot\sqrt{x^4+y^4}} = 0.$            |
|    | $(x,y) \rightarrow (0,0)  3 \cdot \sqrt{x^2 + y^2}$                                    |
|    |                                                                                        |
|    |                                                                                        |
|    |                                                                                        |
|    |                                                                                        |
|    |                                                                                        |
|    |                                                                                        |
|    |                                                                                        |
|    |                                                                                        |
|    |                                                                                        |
|    |                                                                                        |
|    |                                                                                        |
|    |                                                                                        |
|    |                                                                                        |
|    |                                                                                        |
|    |                                                                                        |
|    |                                                                                        |
|    |                                                                                        |
|    | (b) 3 points Show that $\lim_{(x,y)\to(0,0)} \frac{3x^4y}{(2x^2+y)^3}$ does not exist. |
|    | $(x,y) \to (0,0) (2x^2 + y)^3$                                                         |
|    |                                                                                        |
|    |                                                                                        |
|    |                                                                                        |
|    |                                                                                        |
|    |                                                                                        |
|    |                                                                                        |
|    |                                                                                        |
|    |                                                                                        |
|    |                                                                                        |
|    |                                                                                        |
|    |                                                                                        |
|    |                                                                                        |
|    |                                                                                        |
|    |                                                                                        |
|    |                                                                                        |
|    |                                                                                        |
|    |                                                                                        |

| ) [3 p | oints Let $f(x)$                            |                                 |                    |                |                       |        |                                         |
|--------|---------------------------------------------|---------------------------------|--------------------|----------------|-----------------------|--------|-----------------------------------------|
|        |                                             |                                 |                    |                | • • • • • • • • •     |        |                                         |
|        |                                             |                                 |                    |                |                       |        |                                         |
|        |                                             |                                 |                    |                |                       |        |                                         |
|        |                                             |                                 |                    |                |                       |        |                                         |
|        |                                             |                                 |                    |                |                       |        |                                         |
|        |                                             |                                 |                    |                |                       |        |                                         |
|        |                                             |                                 |                    |                |                       |        |                                         |
|        |                                             |                                 |                    |                |                       |        |                                         |
|        |                                             |                                 |                    |                |                       |        |                                         |
|        |                                             |                                 |                    |                |                       |        |                                         |
|        |                                             |                                 |                    |                |                       |        | · • • • • • • • • • • • • • • • • • • • |
|        |                                             |                                 |                    |                |                       |        |                                         |
|        |                                             |                                 |                    |                |                       |        |                                         |
|        |                                             |                                 |                    |                |                       |        |                                         |
|        |                                             |                                 |                    |                |                       |        |                                         |
|        |                                             |                                 |                    |                |                       |        |                                         |
|        |                                             |                                 |                    |                |                       |        |                                         |
| ••••   |                                             |                                 |                    | •••••          |                       |        | ••••••                                  |
| l) 3 p | $\overline{\text{oints}}  \text{Let } f(x)$ | $(x,y) = \ln\left(x\right)$     | $(x^2 + y^2)$ , so | how that $f_s$ | $f_{xx} + f_{yy} = 0$ | ).     |                                         |
| l) 3 p | $\overline{\text{oints}}  \text{Let } f(x)$ | $(x,y) = \ln (x)$               | $(x^2 + y^2)$ , s  | how that $f_i$ | $f_{xx} + f_{yy} = 0$ | ).     |                                         |
| l) 3 p |                                             | $(x,y) = \ln (x)$               | $(x^2 + y^2)$ , s  | how that $f_i$ | $f_{yy} = 0$          | ).     |                                         |
| l) 3 p | oints Let $f(x)$                            | $(x,y) = \ln (x)$ $\dots \dots$ | $(x^2 + y^2)$ , so | how that $f_s$ | $f_{xx} + f_{yy} = 0$ | ).<br> |                                         |
| l) 3 p | oints Let $f(x)$                            | $(x,y) = \ln(x)$                | $(x^2 + y^2)$ , so | how that $f_i$ | $f_{yy} = 0$          |        |                                         |
| <br>   | oints Let $f(x)$                            | $(x,y) = \ln (x)$               | $(x^2 + y^2)$ , s. | how that $f_s$ | $f_{yy} = 0$          |        |                                         |
|        | oints Let $f(x)$                            |                                 |                    |                |                       |        |                                         |
|        |                                             |                                 |                    |                |                       |        |                                         |
|        |                                             |                                 |                    |                |                       |        |                                         |
|        |                                             |                                 |                    |                |                       |        |                                         |
|        |                                             |                                 |                    |                |                       |        |                                         |
|        |                                             |                                 |                    |                |                       |        |                                         |
|        |                                             |                                 |                    |                |                       |        |                                         |
|        |                                             |                                 |                    |                |                       |        |                                         |
|        |                                             |                                 |                    |                |                       |        |                                         |
|        |                                             |                                 |                    |                |                       |        |                                         |
|        |                                             |                                 |                    |                |                       |        |                                         |
|        |                                             |                                 |                    |                |                       |        |                                         |