KINGDOM OF SAUDI ARABIA

Ministry of Higher Education

Imam Mohammad Ibn Saud
Islamic University

College of Science

Department of Mathematics \&

1434/1435 Second Semester
Course Code \&Number: Mat 321
Course Title: Modern Algebra
Date of Exam:: 17-5-1435H
Midterm 1
Duration: 1H15

Statistics

(We will write a instead of $[a]$ in \mathbb{Z}_{n})

Solution Q1: The subgroups are: $\langle 1\rangle,\langle 2\rangle,\langle 3\rangle,\langle 5\rangle,\langle 6\rangle,\langle 10\rangle,\langle 15\rangle,\langle 0\rangle$, and the generators are: $1,7,11,13,17,19,23,29$.

Solution Q2: Let $G=\langle a\rangle$ be cyclic group, and $x, y \in G$, then $\exists m, n \in \mathbb{Z}: x=a^{m}, y=a^{n}$. Now $x y=a^{m} a^{n}=a^{m+n}=a^{n+m}=a^{n} a^{m}=y x$. That is G is Abelian. As $\langle 3\rangle=\{1,3,7,9\}=\langle 7\rangle$, then G is cyclic with generator 3 or 7 .

Solution Q3: $\langle 3\rangle=\{1,3,4,5,9\}$. As the inverse of 4 is 3 in \mathbb{Z}_{11}^{*}, then $O(4)=O(3)=|\langle 3\rangle|=5$. Let G be a group of even order. We know that the number of elements of order 2 is odd and $O(e)=1$. That is the number of all elements of order less than or equal 2 is even. So the number of elements of order greater than 2 is even. So the statement is wrong.

Solution Q4: $\varphi(x y)=\frac{|x y|}{x y}=\frac{|x||y|}{x} \frac{|y|}{y}=\varphi(y) \varphi(y)$. Then φ is a homomorphism and as it is from \mathbb{R}^{*} to itself, then it is an
endomorphism. $\operatorname{Ker} \varphi=\mathbb{R}^{+}, \operatorname{Im} \varphi=\varphi\left(\mathbb{R}^{*}\right)=\{1,-1\} . \varphi(3)=6$, since the order of the element 3 in \mathbb{Z}_{6} under addition is 2 . So its image must be of order 2 also and the unique element of order 2 in \mathbb{Z}_{7}^{*} under multiplication is the element 6 .

Solution Q5: $f(x+y)=4(x+y)=4 x+4 y=f(x)+f(y)$. Then f is a homomorphism. $\operatorname{Kerf}=\{0,5,10,15\}$. So f is not monomorphism, because $\operatorname{Kerf} \neq\{0\} . \operatorname{Im} f=f\left(\mathbb{Z}_{20}\right)=\{0,4,8,12,16\}$. So f is not epimorphism, because $\operatorname{Im} f \neq \mathbb{Z}_{20}$ (The codomain)

Solution Q6: $\alpha=\left(\begin{array}{llllll}1 & 7 & 6 & 4 & 3 & 2\end{array}\right) . ~ O(\alpha)=6$. $\alpha=\left(\begin{array}{ll}1 & 2\end{array}\right)\left(\begin{array}{ll}1 & 3\end{array}\right)\left(\begin{array}{ll}1 & 4\end{array}\right)\left(\begin{array}{ll}1 & 6\end{array}\right)\left(\begin{array}{ll}1 & 7\end{array}\right)$ and α is an odd permutation. $Z\left(S_{3}\right)=\{e\}$, since
$\left(\begin{array}{ll}1 & 2\end{array}\right)\left(\begin{array}{ll}1 & 3\end{array}\right) \neq\left(\begin{array}{ll}1 & 3\end{array}\right)\left(\begin{array}{ll}1 & 2\end{array}\right)$
$\left(\begin{array}{ll}1 & 2\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right) \neq\left(\begin{array}{ll}2 & 3\end{array}\right)\left(\begin{array}{ll}1 & 2\end{array}\right)$
$\left(\begin{array}{ll}1 & 2\end{array}\right)\left(\begin{array}{lll}1 & 2 & 3\end{array}\right) \neq\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)\left(\begin{array}{ll}1 & 2\end{array}\right)$
$\left(\begin{array}{ll}1 & 2\end{array}\right)\left(\begin{array}{lll}1 & 3 & 2\end{array}\right) \neq\left(\begin{array}{lll}1 & 3 & 2\end{array}\right)\left(\begin{array}{ll}1 & 2\end{array}\right)$

