KINGDOM OF SAUDI ARABIA

Ministry of Higher Education

Imam Mohammad Ibn Saud

Islamic University

College of Science

Department of Mathematics & Statistics

1434/1435 Second Semester

Course Code &Number: Mat 321

Course Title: Modern Algebra

Date of Exam:: 17-5-1435H

Midterm 1

Duration: 1H15

(We will write a instead of [a] in \mathbb{Z}_n)

Solution Q1: The subgroups are: $\langle 1 \rangle, \langle 2 \rangle, \langle 3 \rangle, \langle 5 \rangle, \langle 6 \rangle, \langle 10 \rangle, \langle 15 \rangle, \langle 0 \rangle$, and the generators are: 1,7,11,13,17,19,23,29.

Solution Q2: Let $G = \langle a \rangle$ be cyclic group, and $x, y \in G$, then $\exists m, n \in \mathbb{Z} : x = a^m, y = a^n$. Now $xy = a^m a^n = a^{m+n} = a^{n+m} = a^n a^m = yx$. That is G is Abelian. As $\langle 3 \rangle = \{1, 3, 7, 9\} = \langle 7 \rangle$, then G is cyclic with generator 3 or 7.

Solution Q3: $\langle 3 \rangle = \{1, 3, 4, 5, 9\}$. As the inverse of 4 is 3 in \mathbb{Z}_{11}^* , then $O(4) = O(3) = |\langle 3 \rangle| = 5$. Let G be a group of even order. We know that the number of elements of order 2 is odd and O(e) = 1. That is the number of all elements of order less than or equal 2 is even. So the number of elements of order greater than 2 is even. So the statement is wrong.

Solution Q4: $\varphi(xy) = \frac{|xy|}{xy} = \frac{|x|}{x} \frac{|y|}{y} = \varphi(y)\varphi(y)$. Then φ is a homomorphism and as it is from \mathbb{R}^* to itself, then it is an

endomorphism. $Ker\varphi = \mathbb{R}^+$, $\operatorname{Im} \varphi = \varphi(\mathbb{R}^*) = \{1, -1\}$. $\varphi(3) = 6$, since the order of the element 3 in \mathbb{Z}_6 under addition is 2. So its image must be of order 2 also and the unique element of order 2 in \mathbb{Z}_7^* under multiplication is the element 6.

Solution Q5: f(x + y) = 4(x + y) = 4x + 4y = f(x) + f(y). Then f is a homomorphism. $Kerf = \{0, 5, 10, 15\}$. So f is not monomorphism, because $Kerf \neq \{0\}$. Im $f = f(\mathbb{Z}_{20}) = \{0, 4, 8, 12, 16\}$. So f is not epimorphism, because Im $f \neq \mathbb{Z}_{20}$ (The codomain)

Solution Q6: $\alpha = \begin{pmatrix} 1 & 7 & 6 & 4 & 3 & 2 \end{pmatrix}$. $O(\alpha) = 6$. $\alpha = \begin{pmatrix} 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 3 \end{pmatrix} \begin{pmatrix} 1 & 4 \end{pmatrix} \begin{pmatrix} 1 & 6 \end{pmatrix} \begin{pmatrix} 1 & 7 \end{pmatrix}$ and α is an odd permutation. $Z(S_3) = \{e\}$, since $\begin{pmatrix} 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 3 \end{pmatrix} \neq \begin{pmatrix} 1 & 3 \end{pmatrix} \begin{pmatrix} 1 & 2 \end{pmatrix}$ $\begin{pmatrix} 1 & 2 \end{pmatrix} \begin{pmatrix} 2 & 3 \end{pmatrix} \neq \begin{pmatrix} 2 & 3 \end{pmatrix} \begin{pmatrix} 1 & 2 \end{pmatrix}$ $\begin{pmatrix} 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \end{pmatrix} \neq \begin{pmatrix} 2 & 3 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$ $\begin{pmatrix} 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \end{pmatrix} \neq \begin{pmatrix} 1 & 2 & 3 \end{pmatrix} \neq \begin{pmatrix} 1 & 3 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \end{pmatrix} \neq \begin{pmatrix} 1 & 3 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \end{pmatrix} \neq \begin{pmatrix} 1 & 3 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \end{pmatrix} \neq \begin{pmatrix} 1 & 3 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \end{pmatrix} \neq \begin{pmatrix} 1 & 3 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \end{pmatrix} \neq \begin{pmatrix} 1 & 3 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$