Calculus II, MAT102,

Sheet 4 (Sequences of Real Numbers & Infinite Series)

Name	
Student Number	
Year	
Mark	/10
Hand in by	

(Exercises)

Please attach your working, with this sheet at the front.

1. write out the first six terms of the given sequence.

(i)
$$a_n = \frac{3}{n+4}$$
 (ii) $a_n = (-1)^n \frac{n}{n+1}$

2. Determine whether the sequence converges or diverges.

(i)
$$a_n = \frac{5n^3 - 1}{2n^3 + 1}$$

(ii) $a_n = (-1)^n \frac{n+4}{n+1}$

3. Use the Squeeze Theorem to prove that the given sequence converges to 0

$$a_n = \frac{\cos n\pi}{n^2} \; .$$

4. Determine whether the sequence is increasing, decreasing or neither.

$$a_n = \frac{3^n}{(n+2)!} \; .$$

5. Determine whether the series converges or diverges. For convergent series, find the sum of the series.

(i)
$$\sum_{k=0}^{\infty} \left(\frac{1}{3}\right) 5^k$$

(ii) $\sum_{k=3}^{\infty} (-1)^k \frac{3}{2^k}$

(iii)
$$\sum_{k=1}^{\infty} \frac{4}{k(k+2)}$$

(iv)
$$\sum_{k=1}^{\infty} \frac{4k}{k+2}$$

(v)
$$\sum_{k=1}^{\infty} \frac{9}{k(k+3)}$$

(vi)
$$\sum_{k=0}^{\infty} \left(\frac{1}{2^k} - \frac{1}{k+1}\right)$$

(vii)
$$\sum_{k=2}^{\infty} \left(\frac{1}{k} - \frac{1}{4^k}\right)$$

(viii)
$$\sum_{k=0}^{\infty} \left(\frac{1}{2^k} - \frac{1}{3^k}\right)$$