Calculus II, MAT102,

Sheet 4 (Sequences of Real Numbers \& Infinite Series)

Name	
Student Number	
Year	
Mark	
Hand in by	

(Exercises)
Please attach your working, with this sheet at the front.

1. write out the first six terms of the given sequence.
(i) $a_{n}=\frac{3}{n+4}$
(ii) $a_{n}=(-1)^{n} \frac{n}{n+1}$
2. Determine whether the sequence converges or diverges.
(i) $a_{n}=\frac{5 n^{3}-1}{2 n^{3}+1}$
(ii) $a_{n}=(-1)^{n} \frac{n+4}{n+1}$
3. Use the Squeeze Theorem to prove that the given sequence converges to 0

$$
a_{n}=\frac{\cos n \pi}{n^{2}} .
$$

4. Determine whether the sequence is increasing, decreasing or neither.

$$
a_{n}=\frac{3^{n}}{(n+2)!} .
$$

5. Determine whether the series converges or diverges. For convergent series, find the sum of the series.
(i) $\sum_{k=0}^{\infty}\left(\frac{1}{3}\right) 5^{k}$
(ii) $\sum_{k=3}^{\infty}(-1)^{k} \frac{3}{2^{k}}$
(iii) $\sum_{k=1}^{\infty} \frac{4}{k(k+2)}$
(iv) $\sum_{k=1}^{\infty} \frac{4 k}{k+2}$
(v) $\sum_{k=1}^{\infty} \frac{9}{k(k+3)}$
(vi) $\sum_{k=0}^{\infty}\left(\frac{1}{2^{k}}-\frac{1}{k+1}\right)$
(vii) $\sum_{k=2}^{\infty}\left(\frac{1}{k}-\frac{1}{4^{k}}\right)$
(viii) $\sum_{k=0}^{\infty}\left(\frac{1}{2^{k}}-\frac{1}{3^{k}}\right)$
