MIDTERM (2)

Kingdom of Saudi Arabia

AL-Imam Mohammed Bin Saud
Islamic University
College of Science

Course name: Calculus II
Course code: MAT 102
Semester: 1st /1437-1438
Duration: 1:30

Department of Mathematics

Dr. Ghaliah Alhamzi

Name	
Student Number	
Section	

Question's number	Marks
1	
2	
3	
TOTAL	

Question 1

(a) Determine whether the sequence converges or diverges.

$$
\text { (i) } a_{n}=\frac{2 n+1}{n}
$$

(ii) $a_{n}=\frac{3 n^{2}+1}{2 n^{2}-1}$
(b) Investigate the convergence or divergence of the series by using the limit comparison test,

$$
\begin{equation*}
\text { (i) } \sum_{k=0}^{\infty} \frac{\sqrt{k}}{k^{2}+1} \tag{2Mark}
\end{equation*}
$$

(ii) $\sum_{k=8}^{\infty} \frac{k+1}{k^{3}+2}$
(2 Mark)

Question 2

(a) Show the converges or diverges of the following alternating series
(i) $\sum_{k=1}^{\infty}(-1)^{k+1} \frac{3}{k}$
(2 Mark)
(ii) $\sum_{k=7}^{\infty}(-1)^{k} \frac{2 k-1}{k^{3}}$
(2 Mark)
(b) Determine whether the series is absolutely convergent, conditionally convergent or divergent
(i) $\sum_{k=0}^{\infty}(-1)^{k} \frac{3}{k!}$
(2 Mark)
(ii) $\sum_{k=1}^{\infty}\left(\frac{4 k}{5 k+1}\right)^{k}$
(2 Mark)

Question 3

(a) Find the radius and interval of convergence of the series

$$
\sum_{k=0}^{\infty} \frac{2^{k}}{k!}(x-2)^{k}
$$

(b) Find the Maclaurin series (i.e., Taylor series with $c=0$) and its interval of convergence for $f(x)=e^{2 x}$
(2 Mark)

