MIDTERM (2)

Kingdom of Saudi Arabia
AL-Imam Mohammed Bin Saud
Islamic University
College of Science
Department of Mathematics

Course: Calculus III
Course code: MAT 203
Semester: 1st / 1438
Duration: 1Hour

Dr. Ghaliah Alhamzi

Name	
Student Number	
Section	

Question's number	Marks	
1		$/ 10$
2		$/ 10$
TOTAL		$/ 20$

Question 1

(i) Show $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{3}+4 x^{2}+2 y^{2}}{2 x^{2}+y^{2}}$ exists.
(ii) Let $f(x, y)=e^{x y}+\ln \left(x^{2}+y\right)$, show that $f_{x y}=f_{y x}$.
(iii) Find equations of the tangent plane and the normal line to

$$
z=6-x^{2}-y^{2} \quad \text { at the point }(1,2,1) .
$$

(v) Consider the function

$$
\begin{align*}
& \qquad z=f(x, y)=\sin (x+y) \quad \text { with } \quad x=u v^{2} \quad \text { and } \quad y=u^{2}+\frac{1}{v}, \\
& \text { find } \frac{\partial z}{\partial u} \text { and } \frac{\partial z}{\partial v} \text {. } \tag{3Marks}
\end{align*}
$$

Question 2

(i) For $f(x, y)=x^{2}+y^{2}$, compute $D_{\hat{u}} f(1,-1)$ for \hat{u} in the direction of $\vec{v}=\langle-3,4\rangle$
(ii) locate all critical points and classify them using (Second Derivatives Test)

$$
f(x, y)=e^{-x^{2}}\left(y^{2}+1\right)
$$

(iii) Find the volume beneath the surface and above the rectangular region

$$
z=x^{2}+y^{2}, \quad 0 \leq x \leq 3, \quad 1 \leq y \leq 4
$$

(v) Change the order of integration

$$
\int_{x=0}^{x=1} \int_{y=0}^{y=2 x} f(x, y) d y d x
$$

(2 Marks)

