Final Exam

Kingdom of Saudi Arabia AL-Imam Mohammed Bin Saud Islamic University College of Science Department of Mathematics Course name: Calculus II Course code: MAT 102 Semester: 1st /1437 -1438 Duration: 2 Hours

Dr. Waleed Eltayeb Dr. Ghaliah Alhamzi

Name	
Student Number	
Section	

Question's number	Marks
1	/10
2	/10
3	/10
4	/10
TOTAL	/40

Note: Calculator is allowed

Number of pages (8)

(a) Evaluate the following integrals

(i)
$$\int x^2 \sin x \, dx$$
 (2 Marks)

(ii) $\int \cos^4 x \sin^3 x \, dx$

(2 Marks)

(ii)
$$\int \frac{6x}{x^2 - x - 2} \, dx \tag{2 Marks}$$

(b) Find the limits:

(i)
$$\lim_{x \to \infty} \frac{x^2}{e^x}$$
 (2 Marks)

(ii)
$$\lim_{x \to \infty} \frac{3x^2 + 2}{x^2 - 4}$$
 (2 Marks)

(a) Test each of the following series for convergence:

(i)
$$\sum_{k=1}^{\infty} \left(\frac{1}{6} + \frac{1}{k}\right)^k$$
(2 Marks)

(ii)
$$\sum_{k=4}^{\infty} (-1)^k \frac{10^k}{k!}$$
 (2 Marks)

(iii)
$$\sum_{k=2}^{\infty} \frac{k^2 + 1}{k^3 + 3k + 2}$$

(2 Marks)

(b) Find the Maclaurin series (i.e., Taylor series with c = 0) and its interval of convergence for $f(x) = e^{2x}$ (4 Marks)

(a) Compute the arc length of the curve

y = 5 - 3x for $0 \le x \le 1$.

(4 Marks)

(b) Find the surface area of the surface generated by revolving $y = \sqrt{x}$, for $1 \le x \le 2$, about *x*-axis. (4 Marks)

(c) Find the parametric equation describing the circle of radius 2 centered at (3,4).(2 Marks)

(a) Find the slopes of the tangent lines to the given curves at the indicated points.

$$\begin{cases} x = t^2 - 2\\ y = t^3 - t \end{cases},$$

at t = 1. (3 Marks)

(b) Find the area enclosed by the path of

$$\begin{cases} x = 3\cos t \\ y = 2\sin t \end{cases},$$

for $0 \le t \le 2\pi$

(3 Marks)

(c) Find the polar coordinates corresponding to

$$\frac{xy}{\sqrt{x^2+y^2}} = 1 \ .$$

(4 Marks)

 $The \ End$