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!!! remember what we saw last time 

 The relationship between time and money. 

 The simple interest rate and the interest 

amount 

 The present value of one future cash flow 

 The future value of an amount borrowed or 

invested.  

 The relationship between  Real Interest Rate, 

Nominal Interest Rate  and Inflation.  
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we will see in this unit  

The compound interest rate and the interest 

amount 

  How to Calculate the future value  of a single 

sum of money invested today for several 

periods. 

 How to Calculate the interest rate or the 

number of periods or the principal that achieve 

a fixed future value. 

  

 

  3 



Learning Outcomes 
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At the end of this unit, you should be able to: 

1. Understand compound interest, including 
accumulating, discounting and making comparisons 
using the effective interest rate. 

 
2. Distinguish between compound interest. 
 
3. Identify variables fundamental to solving 
interest problems. 
 
4. Solve problems including future and present 
value.  
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Definition1: In each subsequent period, the interest 
amount computed is used to form a new principal sum, 
which is used to compute the next interest due.  

 As we said, Compound Interest uses the Sum of 
Principal & Interest as a base on which to calculate new 
Interest and new Principal ! 
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Definition2: If the interest rate is constant over 
different periods we have: 

and 
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The compound interest rate is a geometric sequences 
but the simple interest is an arithmetic sequences. 
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Example1: Future Value and Interest 

How much money would you pay in interest if you 
borrowed $1600 for 3 years at 16%  compound  
interest per annum? 

 

Solution: 

Convert the percent to a decimal: 16% = 0.16 
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More Examples 

Example2:  Present Value 

What is the present  value of  $150000 to be 
received 5 years from  today  if  the  discount  rate 
(annual compounded  interest)  is 10%? 

 

Solution: 

Convert the percent to a decimal: 10% = 0.1 
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More Examples 
Example3:  Interest rate 

Assume that the initial amount to invest is           
PV = $100 and the interest rate is constant over 
time. What is the compound interest rate in 
order to have $150 after 5 years? 

Solution: 

PV = $100  and FV5 = $150 
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More Examples 
Example4:  The number of periods (n)  

Find the number of periods to double your 
investment at 6% compound interest per annum . 

 Solution: 

PV = x  and FVn = 2x 

 

 

 

 

Convert the result: 
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n = 11 years + 10 months + 22 days 

     

 
 

 
 

 
 

years
xx

i

PVFV
n

PVFVin
PV

FV
iiPVFV

n

n
nnn

n

 895.11
06.1ln

2ln

06.01ln

2ln

1ln

ln

ln1ln  1  )1(



















The Compound Interest 



12 

Question 1 ?  How to calculate the FV if we have more than   
    one  compounding periods per year ? 

 
Response: 

The table shows some common compounding periods 
and how many times per year interest is paid for them. 

 

 

 

 

 

 

And   

 
 

                    If t=1 we retrieve the old formula 
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Example1: Future Value semi-annually 

You invested $1800 in a savings account that pays 
4.5% interest compounded semi-annually. Find the 
value of the investment in 12 years. 

Solution: 

Convert the percent to a decimal: 4.5% = 0.045 
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Example2: Future Value Quarterly 

You invested $3700 in a savings account that pays 
2.5% interest compounded quarterly. Find the value of 
the investment in 10 years. 

Solution: 

Convert the percent to a decimal: 2.5% = 0.025 
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Example3: Future Value monthly 

You invested $1700 in a savings account that pays 1.5% 
interest compounded monthly. Find the value of the 
investment in 15 years. 

Solution: 

Convert the percent to a decimal: 1.5% = 0.015 
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Example4: Present Value 

You expect to need  $1500 in 3 years. Your bank 
offers 4% interest compounded semiannually. How 
much money  must you put in the bank today (PV) to 
reach your goal in 3 years? 

Solution: 

Convert the percent to a decimal: 4% = 0.04 
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Example5: Making a choice  

Suppose a bank quotes nominal annual interest 
rates on five-year of:                                                                                          

 6.6% compounded annually, 
 6.5% compounded semi-annually, and 
 6.4% compounded monthly. 
 
Which rate should an investor choose for an 
investment of $10000?  

Solution: 

Convert the percent to a decimal:  

6.6% = 0.066; 6.5% = 0.065 and 6.4% = 0.064 

The times per year is respectively t= 1; t = 2 and  

t = 12. 

Non annual Compound Interest 
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Solution : continued 

First proposition: 

 
 

Second proposition: 

 
 

Third proposition: 
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Question 2 ? What would happen to our money if 
we compounded a really large number of times? 
 

Response: 

We would have to compound not just every hour, or 
every minute or every second but for every 
millisecond. We have: 

 

 

 

 Then with Continuous compounding interest we 
have: 
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Example1: Future Value  

If you invest $1000 at an annual interest rate of 
5% compounded continuously, calculate the final 
amount you will have in the account after five 
years. 

Solution: 

Convert the percent to a decimal 5% =0.05 

With continuous compounding formula we obtain 

 

 
 
 

 

 

02.1284$1000 05.05
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Continuous Compound Interest 
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Example2: Finding the time 

How long will it take an investment of $10000 to 
grow to $15000 if it is invested at 9% compounded 
continuously? 

Solution: 

Convert the percent to a decimal 9% =0.09 

With continuous compounding formula we obtain 
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Example3: Finding the interest rate 

What is the interest rate compounded continuously 
of an investment of $10000 to grow to $20000 if 
it is invested for 7 years? 

Solution: 
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Example4: Making a choice 

What amount will an account have after 5 years if 
$100 is invested at an annual nominal rate of 8% 
compounded annually? Semiannually? continuously? 

 Solution: 

Compounded annually:  

 

Compounded semi-annually: 
 
 
Compounded continuously:  
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Compound Interest 
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It’s time to review 
 

Compound interest Simple Interest 

 
 

 
 

 
 
 

Continuous Compound 
Interest 

 

More than one  compounding 
periods per year  
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 we will see in the next unit  

 Meant of simple Annuity  

  

Simple Annuity: Ordinary Annuity, 

Annuity Due (unit10) 

 

 

 

 

 
25 


