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we will see in this unit 

Determinant of matrices 

 Some Properties of Determinants 

 Some applications of determinant of 

matrices 
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Learning Outcomes 
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At the end of this chapter, you should be able to: 

1. Identify square matrices and its regularity. 

2. Find the determinant of matrices 

3.Solve the system of linear equations by Cramer’s 

Rule. 

 

 

 

 

 



In Mathematics, square matrices play prominent role in the 
application of matrix algebra to real-world problems. 
 
• A square matrix is a matrix with the same number of rows 
and columns. An n-by-n matrix is known as a square matrix 
of order n. Any two square matrices of the same order can 
be added and multiplied. 

 

Example1: 
 
 
 
 
 
 

 

  Square Matrices 
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Example of Square Matrix   
• Food shopping online: people go online to shop 

three items and have them delivered to their 
homes. 

• Cartons of eggs, bread, bags of rice were 
ordered online and the people left their address 
for delivery. 

• A selection of orders may look like this: 

 

 

 

Order 

 

Address 

Carton of 

eggs 

   Bread Rice 

Al Wuroud 2 1 3 

Al Falah 4 0 2 

Al Izdihar 5 1 1 
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Remember a Square Matrix notation   

A square matrix is defined by its order which is 
always number of rows by number of columns. 

 
 

 

 

 
 

• A horizontal set of elements is called a row 
• A vertical set is called a column 
• First subscript refers to the row number 
• Second subscript refers to column number 
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Determinant of matrices 

The determinant of square matrix A, denoted det(A), 

or    , is a number that is evaluated by all elements of 

A.  

Determinant of order 2 

The determinant of a 2x2 matrix is the difference 
between the product of the major diagonal elements 
and the product of the minor diagonal elements . 
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More Examples 

Evaluate the determinant of each matrix: 

1/                            

 

2/                  

 

3/                      

 

4/    
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Determinant of order 3: 

• To find the determinant of a 3 x 3 matrix, first 
recopy the first two columns.  Then we obtain 3 
major diagonal elements  and 3 minor diagonal 
elements  (Rule of Sarrus).    

• The determinant of a 3x3 matrix is the 
difference between the sum of the products of the 
major diagonal elements and the sum of the 
products of the minor diagonal elements . 
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Determinant of matrices 



Find the determinant of the following matrix 
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Determinant of matrices 



Evaluate the determinant of theses matrices: 
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Determinant of matrices 
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Some Properties of Determinants 

P1: det (A) = det (AT) 

P2: If all entries of any row or column is zero, then 

det (A) = 0 

P3: If two rows or two columns are identical, or 

linearly dependent then det (A) = 0 

P4: If A is a diagonal matrix or upper triangular or 

lower triangular matrix, then det(A) is equal to 

the product of all diagonal elements. 

 

P5: if              , then A is regular and invertible  
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Some applications of determinant of matrices 

• Mr. Cramer tells us that we can use determinants 
to solve a linear system.  (No elimination; No 
substitution!) 

 

Cramer’s Rule on a System of Two Equations  

Let A be the coefficient matrix for the system: 

 

 

 
If det(A)  0, then the system has one solution, 
and 

 

 

     









2222121

1212111

bxaxa

bxaxa











2221

1211

aa

aa
A

A

ab

ab

x
222

121

1 
A

ba

ba

x
221

111

2 

Gabriel  

Cramer  

(1750ish) 

S = {(x1 , x2)} 



14 

Example 

Solve the system using Cramer’s Rule. 
 
 
 
Step1:  
The coefficient matrix for the system and its 
determinant are: 
  
                       , 

 
Step2:  

 

                                                                  S = {(-11, 9)} 
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Let A be the coefficient matrix for the system: 

 

 
 
 
If det(A)  0, then the system has one solution, and 
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Cramer’s Rule on a System of Three Equations 

S = {(x1 , x2, x3)} 
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Example: 

Solve the system using Cramer’s Rule. 

 
 
 
 
Step1:  
The coefficient matrix for the system and its 
determinant are: 

 

 

     

 

 















130            4

992

14632

31

321

321

xx

xxx

xxx









A A

Cramer’s Rule on a System of Three Equations 



17 

Step2:  
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Cramer’s Rule on a System of Three Equations 

S = {( 25, 22, 30)} 



Time to Review !   
 

Matrices are used to transcript 
information in a system of equations 

 
 The determinants of Matrices can be 
used to solve a linear system. (No 
elimination; No substitution ! Cramer rule)  
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 we will see in the next unit  

 The “arithmetic sequences” and 

“arithmetic series”. 

 The “Geometric  sequences” and 

“Geometric  series”.  

 Solve some questions for real world 

situations in order to solve problems, 

especially economic and financial. 
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