Al-Imam Muhammad Ibn Saud Islamic University College of Economics and Administration Sciences Department of Finance and Investment

Course	Financial Mathematics
Unit course	FIN 118
Number Unit	6
Unit Subject	Applications of Matrices

Dr. Lotfi Ben Jedidia Dr. Imed Medhioub

we will see in this unit

- $\checkmark \textsc{Determinant}$ of matrices
- ✓ Some Properties of Determinants
- \checkmark Some applications of determinant of matrices

LEARNING OUTCOMES

At the end of this chapter, you should be able to:

1. Identify square matrices and its regularity.

2. Find the determinant of matrices

3.Solve the system of linear equations by Cramer's Rule.

Square Matrices

Definition:

In Mathematics, square matrices play prominent role in the application of matrix algebra to real-world problems.

• A square matrix is a matrix with the same number of rows and columns. An n-by-n matrix is known as a square matrix of order n. Any two square matrices of the same order can be added and multiplied.

Example of Square Matrix

- Food shopping online: people go online to shop three items and have them delivered to their homes.
- Cartons of eggs, bread, bags of rice were ordered online and the people left their address for delivery.
- A selection of orders may look like this:

Order	Carton of eggs	Bread	Rice
ALXX			
Al Wuroud	2	1	3
Al Falah	4	0	2
Al Izdihar	5	1	1

Remember a Square Matrix notation

A square matrix is defined by its order which is always number of rows by number of columns.

$$A_{(n,n)} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} \dots & a_{2n} \\ & & \ddots & & \ddots \\ a_{n1} & a_{n2} & a_{n3} \dots & a_{nn} \end{bmatrix}$$

- A horizontal set of elements is called a row
- A vertical set is called a column
- First subscript refers to the row number
- Second subscript refers to column number

Definition 1:

The determinant of <u>square matrix</u> A, denoted det(A), or |A|, is a number that is evaluated by all elements of A.

Determinant of order 2

The determinant of a 2x2 matrix is the difference between the product of the major diagonal elements and the product of the minor diagonal elements .

$$\det(A) = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{21}a_{12}$$

More Examples

Evaluate the determinant of each matrix:

$$1/ A = \begin{bmatrix} 1 & 2 \\ 2 & -4 \end{bmatrix}$$
$$2/ B = \begin{bmatrix} 2 & 4 \\ 2 & 4 \end{bmatrix}$$
$$3/ C = \begin{bmatrix} 1 & 5 \\ 6 & 7 \end{bmatrix}$$
$$4/ D = \begin{bmatrix} -2 & -1 \\ -2 & -5 \end{bmatrix}$$

Determinant of order 3:

• To find the determinant of a 3×3 matrix, first recopy the first two columns. Then we obtain 3 major diagonal elements and 3 minor diagonal elements (Rule of Sarrus).

• The determinant of a 3x3 matrix is the difference between the sum of the products of the major diagonal elements and the sum of the products of the minor diagonal elements.

Example:

Find the determinant of the following matrix

Examples:

Evaluate the determinant of theses matrices:

$$P_1 = \begin{vmatrix} 1460 & 30 & 10 \\ 990 & 20 & 10 \\ 1300 & 0 & 10 \end{vmatrix}$$

$$P_2 = \begin{vmatrix} 20 & 1460 & 10 \\ 10 & 990 & 10 \\ 40 & 1300 & 10 \end{vmatrix}$$

$$P_3 = \begin{vmatrix} 20 & 30 & 1460 \\ 10 & 20 & 990 \\ 40 & 0 & 1300 \end{vmatrix}$$

Some Properties of Determinants

- **P1**: det (A) = det (A^{T})
- P2: If all entries of any row or column is zero, then det (A) = 0

P3: If two rows or two columns are identical, or linearly dependent then det (A) = 0

P4: If A is a diagonal matrix or upper triangular or lower triangular matrix, then det(A) is equal to the product of all diagonal elements.

$$|A| = \prod_{i=1}^{n} a_{ii}$$
 P5: if $|A| \neq 0$, then A is regular and invertible

Some applications of determinant of matrices

• Mr. Cramer tells us that we can use determinants to solve a linear system. (No elimination; No substitution!)

Gabriel Cramer (1750ish)

Cramer's Rule on a System of Two Equations Let A be the coefficient matrix for the system:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 = b_1 \\ a_{21}x_1 + a_{22}x_2 = b_2 \end{cases} \qquad A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$

If det(A) \neq 0, then the system has one solution, and $\begin{bmatrix} b_1 & a_{12} \\ b_2 & a_{22} \end{bmatrix}$
 $x_1 = \frac{\begin{vmatrix} b_1 & a_{12} \\ b_2 & a_{22} \end{vmatrix}}{|A|} \qquad x_2 = \frac{\begin{vmatrix} a_{11} & b_1 \\ a_{21} & b_2 \end{vmatrix}$ $S = \{(x_1, x_2)\}$

13

Cramer's Rule on a System of Two Equations Example

Solve the system using Cramer's Rule.

$$\begin{cases} 2x_1 + 3x_2 = 5\\ 3x_1 + 5x_2 = 12 \end{cases}$$

Step1:

The coefficient matrix for the system and its determinant are:

Step2:

Cramer's Rule on a System of Three Equations

Let A be the coefficient matrix for the system:

 $\begin{cases} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = b_1 \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = b_2 \\ a_{31}x_1 + a_{32}x_2 + a_{33}x_3 = b_3 \end{cases} \qquad A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$

If $det(A) \neq 0$, then the system has one solution, and

						V		
	$ b_1 $	<i>a</i> ₁₂	a_{13}		$ a_{11} $	b_1	<i>a</i> ₁₃	
	b_2	a_{22}	<i>a</i> ₂₃		a_{21}	b_2	<i>a</i> ₂₃	
r –	b_3	<i>a</i> ₃₂	<i>a</i> ₃₃	r =	<i>a</i> ₃₁	b_3	<i>a</i> ₃₃	x.
$x_1 - $	A		λ_2 –				~3	

$$x_{3} = \frac{\begin{vmatrix} a_{11} & a_{12} & b_{1} \\ a_{21} & a_{22} & b_{2} \\ a_{31} & a_{32} & b_{3} \end{vmatrix}}{|A|}$$

 $S = \{(x_1, x_2, x_3)\}$

Cramer's Rule on a System of Three Equations Example:

Solve the system using Cramer's Rule.

$$\begin{cases} 2x_1 + 3x_2 + x_3 = 146 \\ x_1 + 2x_2 + x_3 = 99 \\ 4x_1 + x_3 = 130 \end{cases}$$

Step1:

The coefficient matrix for the system and its determinant are:

$$A = \begin{bmatrix} & & \\ & & \\ & & \end{bmatrix} \qquad A = \begin{bmatrix} & & \\ & & \\ & & \\ & & \end{bmatrix} =$$

Cramer's Rule on a System of Three Equations

Step2:

Time to Review !

✓Matrices are used to transcript information in a system of equations

✓ The determinants of Matrices can be used to solve a linear system. (No elimination; No substitution ! Cramer rule)

we will see in the next unit

- ✓ The "arithmetic sequences" and "arithmetic series".
- \checkmark The "Geometric sequences" and
- "Geometric series".
- ✓ Solve some questions for real world situations in order to solve problems, especially economic and financial.

