Al-Imam Muhammad Ibn Saud Islamic University College of Economics and Administration Sciences Department of Finance and Investment

Course	Financial Mathematics
Unit course	FIN 118
Number Unit	5
Unit Subject	Matrices

Dr. Lotfi Ben Jedidia Dr. Imed Medhioub

we will see in this unit

✓ Matrix / Matrices

✓ Different types of matrices

\checkmark Usual operations on matrices

LEARNING OUTCOMES

At the end of this chapter, you should be able to:

1. Define and use the matrix form.

2.Distinct between the different types of matrices and its properties.

3. Make usual operations on matrices.

Matrix / Matrices

Definition:

In Mathematics, matrices are used to store information.

• This information is written in a rectangular arrangement of rows and columns.

• Each entry, or element, of a matrix has a precise position and meaning.

Example of Matrix

- Food shopping online: people go online to shop four items and have them delivered to their homes.
- Cartons of eggs, bread, bags of rice, packets of chickens were ordered online and the people left their address for delivery.
- A selection of orders may look like this:

Order	Carton of eggs	Bread	Rice	Chicken
Address				
Al Wuroud	2	1	3	0
Al Falah	4	0	2	1
Al Izdihar	5	1	1	7

Matrix notation

A matrix is defined by its order which is always number of rows by number of columns.

$$A_{(m,n)} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & a_{m3} \dots & a_{mn} \end{bmatrix}$$

- A horizontal set of elements is called a row
- A vertical set is called a column
- First subscript refers to the row number
- Second subscript refers to column number

Types of matrices

1/Row vector m=1 2/Column vector n=1 $R_{(1,n)} = \begin{bmatrix} r_1 & r_2 & \dots & r_n \end{bmatrix} \\ R_{(1,4)} = \begin{bmatrix} 3 & -2 & 4 & 1 \end{bmatrix} \\ C_{(m\times 1)} = \begin{bmatrix} c_1 \\ c_2 \\ c_3 \\ c_4 \end{bmatrix} \\ C_{(3,1)} = \begin{bmatrix} 1 \\ 3 \\ 7 \end{bmatrix} \\$

 $A_{(n,n)} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & a_{n3} \dots & a_{nn} \end{bmatrix} \quad A_{(3,3)} = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 4 & 5 \\ -1 & 2 & 7 \end{bmatrix}$

Some other Matrices

Zero Matrix
 Transpose of a matrix
 Symmetric matrix
 Diagonal matrix
 Diagonal matrix
 Identity matrix
 Identity matrix
 Upper triangular matrix
 Lower triangular matrix

Zero Matrix

Every element of a matrix is zero, it is called a zero matrix, i.e.,

$$O = \begin{bmatrix} 0 & 0 & \dots & 0 \\ \vdots & \vdots & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 \end{bmatrix}$$

• The symbol O is used to denote the zero matrix.

Transpose of a matrix

The matrix obtained by interchanging the rows and columns of a matrix A is called the transpose of A (write A^{T} or A').

e.g.

$$A_{(2,3)} = \begin{bmatrix} 1 & 0 & 3 \\ 4 & 2 & 7 \end{bmatrix} \implies A_{(3,2)}^T = A_{(3,2)} = \begin{bmatrix} 1 & 4 \\ 0 & 2 \\ 3 & 7 \end{bmatrix}$$

Symmetric matrix

• A symmetric matrix is a square matrix which satisfy the following property:

 $a_{ij} = a_{ji}$ for all i's and j's.

• A symmetric matrix satisfy that : $A = A^T$ <u>Example</u>: the following matrix is symmetric

$$A = \begin{bmatrix} 5 & 2 & 3 \\ 2 & 6 & 4 \\ 3 & 4 & 9 \end{bmatrix} \qquad A^{T} = \begin{bmatrix} 5 & 2 & 3 \\ 2 & 6 & 4 \\ 3 & 4 & 9 \end{bmatrix} = A$$
$$a_{12} = a_{21}, a_{13} = a_{31}$$

 $a_{23} = a_{32}$

Diagonal matrix

• A Diagonal matrix is a square matrix where all elements off the main diagonal are zero.

 $a_{ii} = a_{ji} = 0$ for all i's and j's with $i \neq j$ $D_{(n,n)} = \begin{bmatrix} a_{11} & 0 & 0 \dots & 0 \\ 0 & a_{22} & 0 \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 \dots & a_{nn} \end{bmatrix}$ Example: $D = \begin{vmatrix} 2 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & 1 \end{vmatrix}$

Identity matrix

• An identity matrix is a diagonal matrix where all elements of the main diagonal are one.

$$a_{ii} = 1 \forall i \text{ and } a_{ij} = 0 \text{ for all } i \neq j$$

$$I_n = \begin{bmatrix} 1 & 0 & 0 \dots & 0 \\ 0 & 1 & 0 \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 \dots & 1 \end{bmatrix}$$
Examples:
$$I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad I_4 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Upper triangular matrix

• An upper triangular matrix is a square matrix where all elements below the main diagonal are zero.

$$a_{ij} = 0 \text{ for all } i > j \qquad U = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ 0 & a_{22} & \ddots & \vdots \\ \vdots & \ddots & \ddots & a_{n-1,n} \\ 0 & \dots & 0 & a_{nn} \end{bmatrix}$$
$$U_{3} = \begin{bmatrix} 2 & 4 & 5 \\ 0 & 1 & 7 \\ 0 & 0 & 3 \end{bmatrix} \qquad U_{4} = \begin{bmatrix} 1 & 3 & 2 & 1 \\ 0 & 2 & 1 & 4 \\ 0 & 0 & 8 & 6 \\ 0 & 0 & 0 & 9 \end{bmatrix}$$

Lower triangular matrix

• A Lower triangular matrix is a square matrix where all elements above the main diagonal are zero.

$$a_{ij} = 0 \text{ for all } i < j \qquad \qquad L = \begin{bmatrix} a_{11} & 0 & \dots & 0 \\ a_{21} & a_{22} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ a_{n1} & \cdots & a_{n,n-1} & a_{nn} \end{bmatrix}$$

Examples:
$$L_{3} = \begin{bmatrix} 2 & 0 & 0 \\ 4 & 1 & 0 \\ 5 & 7 & 3 \end{bmatrix} \qquad L_{4} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 3 & 2 & 0 & 0 \\ 2 & 1 & 8 & 0 \\ 1 & 4 & 6 & 9 \end{bmatrix}$$

Usual operations on matrices

Addition and Subtraction of matrices

Matrices can be added or subtracted if they have the same order. Corresponding entries are added (or subtracted).

$$A_{mn} \pm B_{mn} = C_{mn}$$

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \pm \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ b_{21} & b_{22} & \cdots & b_{2n} \\ \vdots & \vdots & & \vdots \\ b_{m1} & b_{m2} & \cdots & b_{mn} \end{bmatrix} = \begin{bmatrix} (a_{11} \pm b_{11}) & \cdots & (a_{1n} \pm b_{1n}) \\ (a_{21} \pm b_{21}) & \cdots & (a_{2n} \pm b_{2n}) \\ \vdots & & \vdots \\ (a_{m1} \pm b_{m1}) & \cdots & (a_{mn} \pm b_{mn}) \end{bmatrix}$$

Examples

Find, if possible, (1) A + B (2) A - C (3) B - A(4) A + D (5) D - C (6) D - A(7) C + D (8) C - D (9) D - B

Usual operations on matrices

Scalar Multiplication of matrices:

Multiplication of a matrix A by a scalar α is obtained by multiplying every element of A by α :

$$\alpha A = [\alpha a_{ij}].$$

$$\alpha A = \begin{bmatrix} \alpha a_{11} & \alpha a_{12} & \cdots & \cdots & \alpha a_{1n} \\ \alpha a_{21} & \alpha a_{22} & \cdots & \cdots & \alpha a_{2n} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \vdots & \vdots \\ \alpha a_{m1} & \alpha a_{m2} & \cdots & \vdots & \vdots & \alpha a_{mn} \end{bmatrix}$$
Examples:
$$A = \begin{bmatrix} 1 & 2 \\ 1 & 3 \\ 1 & 5 \end{bmatrix} \quad 3A = \begin{bmatrix} 3 & 6 \\ 3 & 9 \\ 3 & 15 \end{bmatrix} \quad 5A = \begin{bmatrix} 5 & 10 \\ 5 & 15 \\ 5 & 25 \end{bmatrix}$$

Usual operations on matrices

Multiplication of two matrices:

Multiplication of a matrix A by a matrix B is possible if the number of columns of A is equal to the number of rows of B.

Examples

Consider $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \qquad B = \begin{bmatrix} 3 & 1 \\ 2 & 5 \end{bmatrix} \qquad C = \begin{bmatrix} 1 & 2 \\ 3 & 0 \\ 4 & 5 \end{bmatrix}$ $1/A \times B = \begin{bmatrix} 1 & -2 \\ 3 & 4 \end{bmatrix} \times \begin{bmatrix} 3 & 1 \\ 2 & 5 \end{bmatrix} = \begin{bmatrix} 1 \times 3 + 2 \times 2 & 1 \times 1 + 2 \times 5 \\ 3 \times 3 + 4 \times 2 & 3 \times 1 + 4 \times 5 \end{bmatrix}$ $2/B \times A = \begin{bmatrix} 3 & 1 \\ 2 & 5 \end{bmatrix} \times \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} \\ \\ \\ \\ \\ \\ \end{bmatrix} \neq A \times B$

$$3/C \times B = \begin{bmatrix} 1 & 2 \\ 3 & 0 \\ 4 & 5 \end{bmatrix} \begin{bmatrix} 3 & 1 \\ 2 & 5 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 3 & 0 \\ 2 & 5 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 5 \end{bmatrix}$$

Example of use

• Let's show, by a real-life example, why matrix multiplication is defined in such a way.

• Ahmad, Muhammad and Nayef three students in IMAM University invest their money in the same stocks but with different quantities. Ahmad's, Muhammad's and Nayef's stock holding are given by the matrix:

		Q_1	Q_2	Q_3
$M = M_{L}$	Ahmad	20	30	10
	Muhammad	10	20	10
	Nayef	40	0	10

Example of use (continued)

- Now suppose that the prices of three types of stocks are respectively 25 SAR, 22 SAR and 30 SAR.
- Let the price matrix be $P = \begin{bmatrix} 25\\22\\30 \end{bmatrix}$
- Then the amount that the first student will pay is just the first entry of the product.

$$M \times P = \begin{bmatrix} 20 & 30 & 10 \\ 10 & 20 & 10 \\ 40 & 0 & 10 \end{bmatrix} \begin{bmatrix} 25 \\ 22 \\ 30 \end{bmatrix} = \begin{bmatrix} 1460 \\ 990 \\ 1300 \end{bmatrix}$$

Matrix Properties

- Matrix addition is commutative : A + B = B + A
- Matrix addition is associative: A + (B + C) = (A + B) + C
- Matrix addition is distributive : $\alpha(A + B) = \alpha A + \alpha B$

where a is a scalar.

- Matrix multiplication is associative : (A.B).C = A.(B.C)
- Matrix multiplication is distributive : (A + B).C
 = A.C + B.C
- Multiplication is generally not commutative : A.B ≠ B.A

Time to Review!

✓ Matrices are used to store information. This information is written in a rectangular arrangement of rows and columns.

 \checkmark Matrices can be added or subtracted if they have the same order.

 \checkmark Multiplication of a matrix A by a matrix B is possible if the number of columns of A is equal to the number of rows of B.

we will see in the next unit

- \checkmark Determinant of matrices
- ✓ Some Properties of Determinants
- ✓ Some applications of determinant of matrices

