Al-Imam Muhammad Ibn Saud Islamic University College of Economics and Administration Sciences Department of Finance and Investment

Course	Financial Mathematics
Unit course	FIN 118
Number Unit	3
Unit Subject	Derivability Critical points Inflection point

Dr. Lotfi Ben Jedidia Dr. Imed Medhioub

We will see in this unit

- 1. Derivative of function
- 2. How to compute derivative?
- 3. Some rules of differentiation
- 4. Second and higher derivatives
- 5. Interpretation of the derivative
- 6. Critical points
- 7. Inflection point

LEARNING OUTCOMES

At the end of this chapter, you should be able to:

- 1. Understand what is meant by "Differentiation and Derivative of function".
- 2. Compute these derivatives.
- 3. Apply some rules of differential calculus that are especially useful for decision making.
- 4. Find the critical & inflection points of a function.
- 5. Apply derivatives to real world situations in order to optimize unconstrained problems, especially economic and finance.

Derivative of Function

<u>Definition1:</u>

Differentiation is a method to compute the <u>rate</u> at which a dependent output y changes with respect to the change in the independent input x.

Definition2:

<u>This rate of change</u> is called the <u>derivative</u> of y (the function) with respect to x. The derivative gives the value of the <u>slope of</u> <u>the tangent line</u> to a curve at a point (rate of change).

Definition3:

The slope of the tangent line is very close to the slope of the line through (a, f(a)) and a nearby point on the graph, for example (a + h, f(a + h)).

$$f'(x) = \frac{df}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

How to compute derivative ?

To compute the derivative of a function, we can use four steps.

Step 1 : compute
$$f(x+h)$$
Step2 : compute $f(x+h) - f(x)$

Step 3 : compute
$$\frac{f(x+h)-f(x)}{h}$$

Step 4 : compute
$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

5

How to compute derivative ? Example1:

Find the derivative of $f(x) = 3x^2 + 5$

Step 1:
$$f(x+h) = 3(x+h)^2 + 5 = 3x^2 + 6xh + 3h^2 + 5$$

Step 2: $f(x+h) - f(x) = 3h^2 + 6xh$
Step 3: $\frac{f(x+h) - f(x)}{h} = \frac{3h^2 + 6xh}{h} = 3h + 6x$
Step 4: $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} 3h + 6x = 6x$

$$f(x) = 3x^2 + 5 \implies f'(x) = 6x$$

Some rules of differentiation

To simplify the determination of derivatives we can use the following rules.

$$1/ \frac{d}{dx}k = (k)' = 0 \qquad 2/ \frac{d}{dx}cx = (cx)' = c$$
$$3/ \frac{d}{dx}x^{n} = (x^{n})' = nx^{n-1} \qquad 4/\frac{d}{dx}cx^{n} = (cx^{n})' = ncx^{n-1}$$
$$5/ \frac{d}{dx}\sqrt{x} = (\sqrt{x})' = \frac{1}{2\sqrt{x}} \qquad 6/ \frac{d}{dx}(\frac{1}{x}) = (\frac{1}{x})' = \frac{-1}{x^{2}}$$
$$7/ \frac{d}{dx}\ln(x) = (\ln(x))' = \frac{1}{x} \qquad 8/ \frac{d}{dx}e^{x} = (e^{x})' = e^{x}$$

Some rules of differentiation

9/
$$(f(x)\pm g(x))' = f'(x)\pm g'(x)$$

10/
$$(f(x) \times g(x))' = f'(x)g(x) + f(x)g'(x)$$

11/ $\left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x)g(x) - f(x)g'(x)}{(g(x))^2}$

12/
$$(f^{n}(x))' = nf'(x)f^{n-1}(x)$$

13/
$$(\ln(f(x)))' = \frac{f'(x)}{f(x)}$$

14/ $(e^{f(x)})' = f'(x)e^{f(x)}$

Derivative of Function

Examples:

Find the derivatives of the functions

$$f(x) = 2x + 1$$

$$f(x) = 3x^5 - 2x^3 + 7x - 10$$

3/
$$f(x) = (x^2 + 7x - 10)^3$$

1

4/
$$f(x) = \frac{x^{-1} - 1}{x^{2} + 1}$$

5/ $f(x) = \ln(x^{2} - 1)$
6/ $f(x) = e^{(x^{2} - 1)}$

Second and Higher Derivatives

Given a function f we defined first derivative of the function as: $f^{(1)}(x) = f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$

The second derivative is obtained by:

$$f^{(2)}(x) = f''(x) = \lim_{h \to 0} \frac{f^{(1)}(x+h) - f^{(1)}(x)}{h}$$

And the n-th derivative is obtained by:

$$f^{(n)}(x) = \lim_{h \to 0} \frac{f^{(n-1)}(x+h) - f^{(n-1)}(x)}{h}$$

Second and Higher Derivatives

Example:

1/ the function: $f(x) = 4x^5 - 3x^2 + 2x - 10$ 2/ first derivative : $f^{(1)} = f'(x) = 20x^4 - 6x + 2$ 3/ second derivative : $f^{(2)} = f''(x) = 80x^3 - 6$ $f^{(3)} = f^{'''}(x) = 240x^2$ 4/ third derivative : $f^{(4)} = f^{''''}(x) = 480x$ 5/ fourth derivative : 6/ fifth derivative : $f^{(5)} = f^{''''}(x) = 480$

Interpretation of the derivative

First derivative:

• If f'(x) > 0 in a particular interval, then the function is increasing in that particular interval.

• If f'(x) < 0 in a particular interval, then the function is decreasing in that particular interval.

Second derivative:

• If f''(x) > 0 in a particular interval, then the graph of the function is concave upward or strictly convex "U" in that particular interval.

• If f''(x) < 0 in a particular interval, then the graph of the function is concave downward " \cap " or strictly concave in that particular interval. 12

Interpretation of the derivative

Example1:

Find where the function $f(x) = -x^3 + 1.5x^2 + 6x - 9$

is increasing and where it is decreasing.

Solution: $f'(x) = -3x^2 + 3x + 6 = -3(x+1)(x-2)$ $f'(x) = 0 \Rightarrow x = -1 \text{ or } x = 2$ f'(x) f'(x) f'(x)f(x)

Thus the function is increasing on [-1;2] and it is decreasing on]- ∞ , -1[and]2, + ∞ [.

Interpretation of the derivative

Example2:

Find where the function $f(x) = -x^3 + 1.5x^2 + 6x - 9$ is strictly concave and where it is strictly convex. Solution: $f''(x) = -6x + 3; f''(x) = 0 \Longrightarrow x = 1/2$

Thus the function is convex on]- ∞ , 0.5[and concave on $]0.5, +\infty[$. 14

Critical points: local extrema

<u>Definition 1</u>:

A critical point of a function of a single real variable f(x) is a value x_0 in the domain of f where either the function is not differentiable or its derivative is 0, f'(x)=0.

✓ The point $M = (x_0, f(x_0))$ is a local minimum if

$$f'(x_0) = 0$$
 and $f''(x_0) > 0$

✓ The point $M = (x_0, f(x_0))$ is a local maximum if

$$f'(x_0) = 0$$
 and $f''(x_0) < 0$

Inflection point

Definition2:

The point $M = (x_0, f(x_0))$ is an inflection point if the second derivative of the function changes signs from + to - or - to +, i.e. the curve changes from concave upward to concave downward or from concave downward to concave upward at M.

Inflection point

Example1: maximum

Find the critical point of the following quadratic function: $f(x) = -x^2 + 2x + 3$ Step 1: f'(x) = -2x + 2 and f''(x) = -2Step 2: $f'(x) = 0 \Rightarrow -2x + 2 = 0$, then x = 1

Step 3 : we find the sign chart table.

Graph of the function

- M correspond to the vertex point (see the chapter 2)
- X = -1 and x = 3 are the roots of the equation.
- The function is increasing in]- ∞ , 1[and decreasing in]1, + ∞ [

Example2: minimum

Find the critical point of the following quadratic function: $f(x) = x^2 + 2x + 3$ Step 1: f'(x) = 2x + 2 and f''(x) = 2Step 2: $f'(x) = 0 \Rightarrow 2x + 2 = 0$, then x = -1

Step 3 : we find the sign chart table

Graph of the function

- M(-1,2) is an absolute minimum.
- It correspond to the vertex point (see chapter 2)
- There is no roots for the quadratic equation.
- The function is decreasing in]- ∞ , -1[and increasing in

Critical & Inflection points

Example3: inflection point

Find the critical and inflection points of the following cubic function: $f(x) = x^3 - 3x + 1$ **Step 1:** $f'(x) = 3x^2 - 3$ and f''(x) = 6x**Step 2**: $f'(x) = 0 \implies 3(x^2 - 1) = 0$, then $x = \pm 1$ $f''(x) = 0 \implies 6x = 0$, then x = 0Step 3: we find the sign chart table $+\infty$ $\frac{x}{f'(x)}$ $+\infty$ f(x)(x)22

Critical & Inflection points

Graph of the function

•The function is increasing on $]-\infty$, -1[and]1, + ∞ [. But decreasing on]-1,1[

•It is concave on]- ∞ , O[and convex on]0, + ∞ [.

Critical & Inflection points

Example 4:

Find the critical and the inflection points of the following function: $f(x) = x^3 + 2x^2 + x - 1$

Time to Review !

1. The derivative is the rate of change of a dependent variable with respect to an independent variable

2. The derivative of the function f at the point x = a is defined by:

$$f'(x) = \frac{\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}}{h}$$

Provided the limit exists.

3. First and Second derivatives of a function are useful tool to determine critical points and inflection point.

Time to Review !

- f
- Increasing
- Decreasing
- Maximum or minimum value (when slope = 0)

f'

- Positive (above x axis)
- Negative (below x axis)
- Zero

f" equals zero in x_0 and changes of signs, M (x_0 , f(x_0)) is an inflection point

we will see in the next unit

1. The inverse process of differentiation: Integration.

2. The connection between integration and summation.

3. How to calculate area under a curve.

4. How to calculate area between two Curves.

