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 We will see in this unit  



Learning Outcomes 
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At the end of this chapter, you should be able to: 

 
1. Understand what is meant by “limit of function”. 

2. Compute these limits. 

3. Check existence of these limits. 

4. Understand what is meant by a “continuous 
function”. 

5. Check if a function is continuous graphically. 

6. Check if a function is continuous algebraically. 
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                      Limit of Function 

Example 1: Deduce the value of each function when x gets 

close to +/- infinity   
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                      Limit of Function 

Example 2: Deduce the value of each function when x gets 

close to +/- infinity   
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                      Limit of Function 

Example 3: Deduce the value of each function when x gets 

close to +/- infinity   
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                      Limit of Function 

Example 4: Deduce the value of the function when x gets 

close to +/- infinity and when x gets close to the left of zero (0-) 
and the right of zero (0+)    
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Definition1 : 

The limit of f(x), as x gets close to “a”, equals L is 

written as:                          

 

Sometimes the values of function f tend to different 

limits as x approaches a number “a” from the left side 

and from the right side like the example 4. 
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Limit of Function 
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   Limits to the left, to the right 

Left-Hand Limit (LHL) :   

 

 

 
Right-Hand Limit (RHL) :                              
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Theorem 
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if and only if:  
 

and  
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 This theorem is used to verify whether a limit  
exists or not. 



Computing limits 

• To evaluate limit of a function, we substitute the 

value of (a) in the function.  

• When the value of (a) does not in the domain of a 

function, then we must calculate the LHL and RHL. 

• Sometimes we get an indeterminate form. So we 

must use one of three techniques: factoring or a 

property of limit or the conjugated form.  
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 Computing limits by substitution 

Example1: Find the limit of the function at x = 0, 

At x = 1, x = -2, and x = -3.   

 

Solution: 
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Example2: 

Find the Left-hand Limit and the Right-hand Limit 
of the function at x=0. 

What we can conclude ? 

Solution 

 

                                           

   

   

left-hand limit is different to right-hand limit then  
the limit at x = 0, does not exist. 
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Limits to the right, to the left  Computing limits by substitution 
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Properties of  limits 

P1:If c is any real number,                     , 

Then,   
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P2:If 

Then 

 

P3:If  

then                                   
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Properties of  limits 

P4:If                then                      and 

P5:If                   then                      and    
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Computing limits by using the highest 
degree term 

Example2: Find the limit of the function when x 
gets close to (+/-) infinity.   

 

 
Solution: 
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Computing limits by using the highest 
degree term 

Example3: Find the limit of the function when x 
gets close to (-)infinity.   

 

 
Solution: 
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Computing limits by using the highest 
degree term 

Example4: Find the limit of the function when x 
gets close to (+)infinity.   

 

 
Solution: 
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Time to Review !   
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1. Remember well that the search for endings or limits 

is to know the behavior of the function when x gets 

close to a certain point or to infinity. 

2. Before calculating limits, we search the domain of 

the function. 

3. Computing limits can be achieved by substitution, by 

factoring, by using the highest degree term. 

4. The limit exist if and only if LHL = RHL. 

 

 

 



Continuity of Function 
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A function f is continuous if you can draw it in one 
motion without picking up your pencil. 

Example:  

 

 

 

 

 
 
A  function f is continuous at a point if the limit is 
the same as the value of the function. 

 

Definition1:  

Definition2:  



A function f is continuous at the point x=a if the 
following are true: 

1.                              

2.                               

3.   

  
EX. The function                     is continuous at x=0.  

1.                 ☺  

2.                                             ☺ 

3.                                   ☺ 
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Continuity of Function 

22 



Essential Discontinuities 

                 

 

f(a)=LHL 

RHL 

LHL=RHL 

f(a) 

f(a)=RHL 

LHL 

f(a) is not defined 

a 
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Example 2: 

                                      

 

 

 

• This function has discontinuities at x=1 and x=2. 
• It is continuous at x=3, because the two-sided 
limits match the value of the function. 
• It is continuous at right of x=0 and left of x=4, 
because the one-sided limits match the value of the 
function. 

   

 

Continuity of Function 
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Find discontinuities of the function 

Solution: 

the domain of the function is the real line. The 
discontinuities of the function may be at x=0 
and/or x=2. why ? 

Because the graph of f may have a break at x = 0 
and or x = 2. 

 we will check the discontinuity, point by point. 
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Example 3: 

Continuity of Function 
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1/ at x = 0 

 

*                                       ☺                               

 

*                                                   LHL = RHL=0 then                            ☺ 

 

 

 

*                                                       ☺  

 

The function f is continuous at x = 0. 

 

Example 3:   solution 

Continuity of Function 
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2/ at x = 2 
 

*                                       ☺                               

 

* 

 

 

 

LHL      RHL then                      does not exist  

  

The function f is not continuous at x = 2. 

 

!!!   We say that the function f is continuous to the right point  x= 2. 

 

 

Example 3:   solution 

Continuity of Function 
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We can draw the graph of the function 

 

 

 

 

 

Example 3:   continued 

Continuity of Function 
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Properties of continuous 
functions: 

P1: If f and g are continuous functions at x = a 
then:         ,          , and       ( with            ) are  

continuous functions at x = a.  

P2: A polynomial function is continuous at every 
point. 

P3: A rational function is continuous at every point 
in its domain. 
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Examples: 
 

1/                           is a polynomial function, 

then it is continuous at every point in R.                         

2/                       is a rational function, then  

it is continuous at every point in R\{2} 

 

3/                is a continuous function in its 

domain  
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Continuity of Function 



1. A function is continuous if you can draw it in one 
motion without picking up your pencil. 
 

2. A  function is continuous at a point if the limit 
is the same as the value of the function. 
 
3. All constant functions are continuous.  
 
4. The following types of functions are continuous 
at every member in their domain: polynomial, 
rational, power, root, trigonometric, exponential, 
and logarithmic.  

 

 

Time to Review !   
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We will see in the next unit 
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1. Derivative of function 

2. How to compute derivative? 

3. Some rules of differentiation 

4. Second and higher derivatives 

5. Interpretation of the derivative 

6. Critical points 

7. Inflection point 
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